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Preface

Currently the Mathematical Theory of Contact Mechanics is emerging from
its infancy, and a point has been reached where a unified presentation of the
results, scattered throughout a variety of publications, is needed.

The aim of this monograph is to partially address this need by providing
state-of-the-art mathematical modelling and analysis of some of the phenom-
ena that take place when a deformable body comes into quasistatic contact.
We present models for the processes, describe the mathematical results, and
provide representative proofs. A comprehensive list of recent references sup-
plements this work. Between the time we started writing this monograph
and the present, W. Han and M. Sofonea published the book “Quasistatic
Contact Problems in Viscoelasticity and Viscoplasticity,” which focuses on
mathematical and numerical analysis of contact problems for viscoelastic and
viscoplastic materials.

Our book, divided into three parts, with 14 chapters, is intended as a
unified and readily accessible source for mathematicians, applied mathemati-
cians, mechanicians, engineers and scientists, as well as advanced students.
It is organized in three different levels, so that readers who are not fluent in
the Theory of Variational Inequalities can easily access the modelling part
and the main mathematical results.

Representative proofs, which may be skipped upon first reading, are pro-
vided for those who are interested in the mathematical methods. Part I con-
tains models of the processes involved in contact. It is written at the first level
for those who have an interest in Contact Mechanics or Tribology, and mini-
mal background in differential equations and initial-boundary value problems.
The processes for which we provide various models are friction, heat gener-
ation and thermal effects, wear, adhesion and damage. Several sections are
devoted to each one of these topics and the relationships among them.

The second level of the book, which focuses on the settings of the models
as initial-boundary value problems and their variational formulations, can
be found in Part II. It requires some background in modern mathematics,
although preliminary material is provided in the first chapter. Each chapter
describes a few problems with a common underlying theme. The third level
deals with the proofs of the theorems. In each chapter in Part II, the proofs
of one or two theorems can be found as examples of the mathematical tools
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used. This is also the level for those mathematicians interested in the Theory
of Variational Inequalities and its applications.

We observe that as a result of the specific problems posed by contact
models, the theory had to be extended and some of these generalizations are
also provided. Part III presents a short review and many references of re-
cent results for dynamic contact, one-dimensional contact and miscellaneous
problems not covered in the book. The concluding chapter is a summary and
a discussion of open problems and future directions. The topics of static and
evolution geometrically nonlinear contact problems, including structures, are
currently in preparation by the authors.

We would like to acknowledge and thank all of our collaborators for their
contributions that led to this book, especially to Professors Kevin T. An-
drews, Weimin Han and Kenneth L. Kuttler. We would also like to thank
Prof. Dr. Wolf Beiglböck, Senior Physics Editor, and his staff for their help
in bringing this monograph to your hand.

The third author gratefully acknowledges partial support by the Ministry
of Research and Information Technology (Poland) through the grant No.
T11F00325.

Auburn Hills, Michigan, USA Meir Shillor
Perpignan, France Mircea Sofonea
Warsaw, Poland Józef Joachim Telega

July 2004
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1 Introduction

Considerable progress has been achieved recently in modeling and mathe-
matical analysis of various processes involved in contact between deformable
bodies. Indeed, a general Mathematical Theory of Contact Mechanics is cur-
rently emerging.

Extensive technical literature, mainly in engineering but also in geo-
physics, covers frictional or frictionless contact. In geophysics, the literature
focuses on the motion of tectonic plates and, in particular, on earthquakes.
The engineering literature deals with many aspects and facets of the func-
tioning and operation of machines, mechanisms and structures. The publica-
tions in these disciplines, however, are often concerned with specific settings,
geometries or materials. Their aim is usually related to particular applied
aspects of the problems.

The emerging Mathematical Theory of Contact Mechanics is concerned
with the mathematical structures which underlie general contact problems
with different constitutive laws, i.e., materials, varied geometries, and dif-
ferent contact conditions. The aim is to provide a sound, clear and rigorous
background to the following:

– construction of models based on thermodynamic principles which are mo-
tivated by applications;

– assigning precise meaning to solutions of the models;
– establishing the existence of solutions;
– proving the uniqueness of the solutions, or establishing their nonunique-

ness and finding criteria for choosing the appropriate solution;
– determining the generic regularity or smoothness of the solutions;
– investigating the stability of solutions and their asymptotic behavior;
– describing the qualitative behavior of the solutions.

Once existence, uniqueness or nonuniqueness, and stability of solutions have
been established, related important questions arise, such as: mathematical
analysis of the solutions and how to construct reliable and efficient algorithms
for their numerical approximations with guaranteed convergence.

The theory provides an environment or a structure, where questions of
optimal control and of system parameter identification can be addressed.
These are of considerable theoretical and applied interest. Moreover, optimal

M. Shillor, M. Sofonea, J.J. Telega: Models and Analysis of Quasistatic Contact, Lect. Notes
Phys. 655, (2001), 1–6
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004



2 1 Introduction

shape design, which is one of the main interests of the design engineer can
be investigated and reliable results found.

Of the list above, the progress we describe in this monograph is mainly
in the first three items; namely, modelling, weak or variational formulation,
and existence of solutions. We also present results of uniqueness, a part of
the fourth item, but when the uniqueness is not known, the characterization
of the nonuniqueness is still missing.

Clearly, much remains to be done, and we mention some of the open
problems and future directions in the final chapter. As this monograph shows,
however, recent progress is extensive and the field is vibrant and continues
to evolve.

The first recognized publication on contact between deformable bodies
was that of Hertz [1]. The next one was by Signorini [2], where the problem
was posed, in what is now termed a variational form, and was subsequently
solved by Fichera [3, 4]. However, the general theory of contact mechanics
began with the monograph by Duvaut and Lions [5], who first presented
variational formulations of contact problems and proved some basic existence
and uniqueness results. Then, Duvaut [6], followed by Nečas et al. [7], Jarusek
[8], Cocu [9] and Kato [10], established the existence of a weak solution for
the static frictional contact problem involving linearly elastic materials, where
in [6,9] the friction condition was regularized. The normal compliance contact
condition was introduced by Oden and Martins in [11,12], and the existence
of weak solutions for contact problems with this condition was established
in [11, 12] and also in Telega [13] and Klarbring et al. [14, 15]. These papers
(except [11,12]) dealt with the static frictional problem, which was considered
as a step in a time marching scheme for an evolutionary problem. The static
problem with nonlocal friction law was considered in Demkowicz and Oden
[16] and in Oden and Pires [17].

Andersson [18] and Klarbring et al. [19] were the first to obtain existence
results for the quasistatic frictional contact problem for an elastic material
with normal compliance. Then, Rochdi et al. [20] reported the first existence
and uniqueness result for the quasistatic frictional contact problem with nor-
mal compliance for viscoelastic materials.

This was followed by Amassad et al. [21] who proved the first existence
and uniqueness theorems for the problems of viscoelastic bilateral contact
with slip rate, or total slip rate dependent friction coefficient. The latter
problem takes into account the history of the sliding, and in this manner
the rearrangement of the contact surface due to friction. Next, Shillor and
Sofonea [22] established the first existence and uniqueness theorem for the
viscoelastic bilateral contact problem with friction, and in [23] they proved
the unique solvability of the frictional problem for a viscoplastic material
with damage.

Recently, Andersson [24] obtained the first existence result for solutions
of the quasistatic contact problem with friction and Signorini’s condition
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for an elastic material. Similar results were also proved in Cocu et al. [25],
Rocca [26] and Cocu and Rocca [27]. In [25] the contact was modeled with
a non-local version of Coulomb’s law, in [26] it was modeled with a local
version of Coulomb’s law, and in [27] the model was assumed to involve
friction and adhesion. The variational analysis of the frictionless Signorini
problem was provided in Sofonea [28], in the case of rate-type viscoplastic
materials, and the numerical analysis of this problem was performed in Chen
et al. [29]. These results were extended to the frictionless Signorini problem
between two viscoplastic bodies in Rochdi and Sofonea [30] and Han and
Sofonea [31], respectively.

Although it is customary in engineering and certain mathematical pub-
lications to consider the normal compliance as an approximation of the Sig-
norini nonpenetration condition, the results in this monograph and in the
study of dynamic contact problems indicate that considering the Signorini
condition as an idealization (or even over-idealization) of normal compliance
makes more sense for practical reasons. Such an idealization seems to be use-
ful in some quasistatic problems, but in others it is not. Moreover, in dynamic
contact or impact problems it seems not to be very useful, since a perfectly
rigid body has to support infinite impulsive stresses upon contact or impact,
resulting from the discontinuity of the velocity upon contact. This fact shows
up, mathematically, in the form of weak and likely nonunique solutions, in
which the contact stress is a measure and not an ordinary function. Mod-
els with the Signorini condition are mathematically very complicated, the
solutions weak (when existing), and should be of limited practical use. The
wide-spread use of the condition is due to the ease of writing it and of im-
plementing it in computer codes for numerical approximations. In most cases
the mathematical difficulties associated with it are simply disregarded. How-
ever, there seems to be an important exception, and that is in biomechanics,
in the contact of tissue with bone or implant. The tissue is often modelled as
a viscoelastic material, while the bone or the implant are considered as elas-
tic, but for the purposes of modelling of the contact they are assumed to be
essentially rigid. In such a case the Signorini condition is a reasonable choice.

To the best of our knowledge, the first result for dynamic frictional con-
tact with Tresca’s friction condition was obtained in [5], and the one for
contact with normal compliance can be found in [11,12]. The existence of the
unique solution for the dynamic problem with normal compliance and slip
rate dependent friction coefficient is given in Kuttler and Shillor [32]. First
existence results when the friction coefficient is discontinuous can be found
in Kuttler and Shillor [33, 34] and the first existence result for the Signorini
problem with nonlocal friction in Cocu [35] and the same problem with slip
rate dependent discontinuous friction coefficient in Kuttler and Shillor [36].
A major regularity result for dynamic frictionless contact has been obtained
in Kuttler and Shillor [37]. A related regularity result for the problem with
adhesion and damage can be found in Kuttler et al. [38].
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The first existence result for quasistatic frictionless contact of a thermoe-
lastic body with a rigid foundation was proved in Shi and Shillor [39] and
then extended by Xu [40]. The existence of solutions for a thermoviscoelastic
problem with frictional contact was first established in Figueredo and Tra-
bucho [41], and can be found in Amassad et al. [42], Andrews et al. [43, 44]
and Muñoz Rivera and Racke [45]. In [44], the wear of the contacting surfaces
due to friction has been taken into account by using the Archard law, and
in [42], the friction coefficient was assumed to depend on the slip rate or on
the total slip, i.e., on the process history.

By now the breadth of published results is such that a single survey or
monograph cannot do justice to the field. Therefore, we concentrate exclu-
sively on modelling and variational analysis of multidimensional quasistatic
contact problems for deformable bodies within the framework of small defor-
mations. Some of the issues related to large deformations can be found in a
monograph which is currently in preparation.

We do not describe in any detail publications which deal solely with:

– dynamic contact problems;
– numerical analysis, error bounds or numerical simulations;
– one-dimensional contact problems;
– static or rolling frictional contact;
– problems of crack development;
– earthquakes and geological processes;
– dynamics of contacting rigid bodies;
– impact of rigid bodies.

However, we mention in passing some of those directly related to the
main topics of this monograph, especially in the modelling Chaps. 2 and 3.
Moreover, in Chap. 13 we provide a very brief survey of results dealing with
dynamic, one-dimensional, and miscellaneous contact problems.

Recent papers, reviews, monographs, and books on mathematical and
related problems in contact mechanics include [46–66], and we refer the reader
there for a wealth of additional information about these and related topics.
Rolling frictional contact, a very important topic in transportation, can be
found in the monograph by Kalker [67]. Results on contact with lubrication
can be found in Bayada et al. [68] and references therein.

Quasistatic contact problems are invariably formulated as variational or
quasivariational inequalities. The standard reference for variational inequal-
ities is Kinderlehrer and Stampacchia [69], in addition, useful information
can be found in Barbu [70], Hlaváček et al. [71] and Panagiotopoulos [47,50],
among others.

References for the physical and engineering aspects of contact or consti-
tutive relations are [65,72–79], among many others.

This book synthesizes the mathematical models for the various processes
involved in contact, their variational formulations, the assumptions made on
the data and the statements of the existence and uniqueness theorems. Some
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of the new results are described in detail while others are portrayed only
briefly.

The monograph is structured as follows.
Part I includes the classical description of the equations, material con-

stitutive relations, boundary conditions and models. It is meant to be self
contained. Thermal effects, which often accompany friction are presented.
Recent models for wear and adhesion are described fully, and so are models
for material damage. The derivation of some of the models from thermody-
namic potentials, using thermodynamic laws and subdifferentiation, is pro-
vided in Chap. 4. Our aim is to provide a comprehensive overview of the
currently employed models for the physical phenomena involved in contact.
As can be seen there, the subject is broad, and to have the models reflect
the engineering and industrial needs, some of them use sophisticated mathe-
matics to describe rather complicated processes. In Chap. 5 we assemble the
equations and relevant conditions into a representative problem and describe
it in full detail. This chapter is meant to serve as a bridge between Part I
and Part II.

Part II describes in detail the models and for each one we provide the
classical formulation, and then the variational or weak formulation, detail
the assumptions on the problem data and state the relevant existence and
possibly uniqueness results. Elastic, viscoelastic and viscoplastic constitutive
laws are used to describe the material behavior. Contact is modelled with
the Signorini, normal compliance, or normal damped response conditions.
Friction is modelled with general versions of the Coulomb and Tresca laws.
Models with slip dependent friction, wear or adhesion are also presented. For
each type of problems we provide one or two complete proofs. These indicate
the methods employed and the kind of results that can be obtained by using
them. We note that for some of the models presented there, the numerical
analysis, which includes error estimates, convergence results and numerical
simulations, can be found in [51,56,80,81] and the references therein. We do
not present these results here, since numerical analysis of contact problems
has reached a point where it deserves separate monographs of its own, the
first one of which is [51].

Part III is very short, and only lists some of the more recent references
on dynamic, one-dimensional, and miscellaneous problems. Although we do
comment on some of the papers, the topics have reached a state where they
deserve their own comprehensive presentations. Finally, we summarize the
topics in Chap. 14. While considerable progress has been achieved, much
remains to be done. Therefore, we present some open or unresolved questions
and problems that need to be addressed in the near future to continue the
expansion and deepening of the subject. We also present our personal views
on the future direction of the Mathematical Theory of Contact Mechanics.

The hallmark of contact problems is that the ‘action,’ or the interest-
ing phenomena take place on the surface or boundary of the body or do-
main. Mathematically, the processes are described as boundary conditions,
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and even when the equations of motion, which describe the behaviour of the
bulk material, are linear, the initial-boundary value problems with contact
conditions are strongly nonlinear and quite nonstandard. This peculiarity
may be viewed as an obstacle, introducing considerable difficulties both in
the mathematical investigation and in the numerical analysis, and may lead
to the non-convergence of computer algorithms. On the other hand, it may
be viewed as a challenge, forcing the creation of new mathematical ideas and
tools and, thus, leading to the expansion of the theory.

This monograph clearly shows that the close interaction and cross-
fertilization between Contact Mechanics and the Theory of Variational In-
equalities has been beneficial to both. New contact conditions have led to the
expansion of the Theory as new problems were posed, new operators have
been introduced and analyzed, and extended existence and uniqueness results
have been established. These, in turn, have allowed for a better and more de-
tailed description of the processes, leading to even more sophisticated and
challenging theoretical problems. This close interaction is essentially creating
and expanding the Mathematical Theory of Contact Mechanics.
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Contact processes take place on the surface, and, therefore, are described
by boundary conditions. However, these are the boundaries or surfaces of
mechanical bodies or structures, and one has to describe the evolution of
the mechanical state of the body, as well. The problems, in their classical
formulation, consist of the constitutive laws, the equations of motion and the
relevant initial and boundary conditions. And contact enters naturally via
the boundary conditions.

In this part and the next one the models are constructed within the frame-
work of linearized or small deformations theory. Models for contact within
the theory of large deformations will be described in the future.

We begin with Sect. 2.1 which gives a short description of the modelling
of contact processes and the general structure of the mathematical problems
to provide the reader with an overview of the models and conditions to come.
The physical settings of the problems that will be described in this mono-
graph and the quasistatic equations of motion are given in Sect. 2.2. The
constitutive conditions for elastic, viscoelastic and elastic-viscoplastic mate-
rials are described in Sect. 2.3. Standard boundary conditions can be found
in Sect. 2.4. A short note on the dimensionless form of the various variables is
provided in Sect. 2.5. Then, we devote Sect. 2.6 to several contact boundary
conditions: bilateral contact in which contact is always maintained; normal
compliance, which describes contact with a reactive foundation; the Signorini
condition, which describes contact with a rigid foundation; and the normal
damped response, in which the response of the foundation depends on the
speed. Then, we describe the conditions in the tangential directions. One may
use the frictionless condition, or various versions of friction conditions, which
are described in detail. This leads us, in Sect. 2.7, to discuss the concept of
friction coefficient. It turns out to be a very complex issue, especially if one
wishes to have it depend on the slip speed, on the temperature and on other
surface parameters. Finally, in Sect. 2.8 the transition from the Coulomb-like
behavior to that of Tresca’s is detailed.

This chapter is a basis for most of what follows in this book, and effort
has been made to provide a clear presentation, possibly at the expense of
some redundancy.

M. Shillor, M. Sofonea, J.J. Telega: Models and Analysis of Quasistatic Contact, Lect. Notes
Phys. 655, (2001), 9–29
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004
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2.1 The Modelling of Contact Processes

In this short section we present a general description of the mathematical
approach to the modelling of the processes involved in contact between de-
formable bodies, which will be found in this part of the monograph.

A mathematical model for a process involving a continuous medium con-
sist of clearly and precisely specifying: the geometrical setting, the variables
which determine the state of the system, the material behaviour which is
reflected in a constitutive relation or law, the input data, the equations of
evolution for the state of the system, the initial and boundary conditions for
the system variables, and, finally, clarifying the sense in which the equations
and the conditions are to be satisfied by the solutions. In the mathematical
literature it is customary to put all the equations and conditions in one place,
and call it the model. Usually, the geometry is specified beforehand, and the
various assumptions that underlie the model are spelled out, even if it may
be seen as somewhat pedantic.

It turns out that when dealing with models for the various processes in-
volved in contact often some of the equations or conditions cannot be satisfied
in the usual sense. This is related to the insufficient regularity of the solutions,
which often fail to be continuous or have continuous derivatives. Therefore,
weak or variational formulations are necessary. Moreover, the first step in the
analysis of the models is often carried out using the variational formulations.
However, it is instructive, and often necessary, to have a clear and precise
classical formulation of the various elements of the model. Indeed, in Chap. 5
we describe in detail how to obtain a variational formulation from a classical
one.

This and the following two chapters are dedicated to a thorough presen-
tation and discussion of the various constitutive laws and contact conditions.

We describe elastic, viscoelastic, thermoviscoelastic, and elastic-visco-
plastic constitutive laws, as well as the possible development of material
damage.

We present contact conditions for a rigid or reactive foundation, with or
without friction. The foundation may be stationary or moving. There may
be adhesive on the contact surface, or the wear of the surface material may
be of importance and has to be included.

A material object the behaviour of which we wish to describe is usually
called the ‘body.’ The ‘reference configuration’ is the set of points in space
that the body occupies when it is free of forces or tractions, and has a uniform
temperature. Tractions are just surface forces. Finally, in most of the mono-
graph, unless stated to the contrary, we use variables in dimensionless form,
which means that all the physical quantities were rescaled appropriately. The
issue is discussed in some detail in Sect. 2.5.
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2.2 Physical Setting and Equations of Evolution

The setting we consider consists of a deformable body that may come in con-
tact with another object, the so-called foundation. This term is used when
the internal processes inside it are not a part of the problem under consider-
ation. When the internal processes are important, the problem becomes that
of contact between two deformable bodies. In this book we deal exclusively
with the first case. Indeed, in most situations the problem of contact between
two deformable bodies is very similar, both in the structure of the model and
in its mathematical study, to that of contact with a foundation, and then the
main difficulty becomes in handling correctly cumbersome notation.

The contact with a foundation is also referred to as an obstacle problem,
since the foundation acts as an obstacle, preventing the body from moving
freely.

In this section all the quantities are assumed to have their physical di-
mensions.

Let Ω be a domain in R
d (in the applications we have in mind d =

2, 3 since one-dimensional problems are excluded) representing the reference
configuration of a deformable body which, as a result of forces and tractions
acting on it, may come in contact with a rigid or a reactive foundation.

The surface of the body Γ = ∂Ω is assumed to be composed of three parts:
ΓD – over which the body is held fixed; ΓN – over which known tractions act;
ΓC – over which contact may take place. At each time instant the potential
contact surface ΓC is divided into the part Γ conC where the body and the
foundation are in contact, and the other part Γ sepC where they are separated.
The boundary of the set Γ conC is a free boundary, dictated by the solution of
the problem. The structure of the set Γ conC is of considerable interest, and we
shall remark on this point in Chap. 14.

We denote vectors and tensors by bold-face letters, such as the position
vector x = (x1, . . . , xd), and the (small) strain tensor ε = (εij), for i, j =
1, . . . , d, respectively.

ΓD

ΓN

ΓC

�nFoundation

g−gap

Ω − Body

�

�

�

�

Fig. 1. Schematic physical setting; ΓC is the potential contact surface
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We assume, for the sake of generality, that in the reference configuration
there exists a gap, denoted by g = g(x), between ΓC and the foundation,
that is measured along the outer normal n = (n1, . . . , nd) to ΓC . A schematic
two-dimensional setting is depicted in Fig. 1, however, what follows applies
to very general two- or three-dimensional settings.

We denote by u = u(x, t) = (u1(x, t), . . . , ud(x, t)), σ = σ(x, t) =
(σij(x, t)), and ε = ε(u) the displacement vector, the stress tensor, and
the linearized strain tensor, respectively. The mechanical (isothermal) state
of the system is completely determined by the pair (u,σ). The components
of the linearized strain tensor are given by

εij = εij(u) =
1
2

(ui,j + uj,i),

where, here and below, i, j, k, l = 1, . . . , d; a coma separates the components
from partial derivatives, i.e., ui,j = ∂ui/∂xj , and we employ the summation
convention whenever an index appears exactly twice.

The dynamic equations of motion, representing momentum conservation,
that govern the evolution of the state of the body are

ρüi − σij,j = fBi,

where ρ is the material density and fB = (fB1(x, t), . . . , fBd(x, t)) is the
density (per unit volume) of applied forces, such as gravity. Here and below,
a dot above a variable denotes the derivative with respect to time, and üi =
∂2ui/∂t

2. These equations are valid for all systems and materials, since they
are derived from the fundamental principle of momentum conservation (see,
e.g., [82]).

In this book we are interested in situations in which the system configu-
ration and the external forces and tractions vary in time in such a way that
the accelerations in the system are rather small, so that the inertial terms
ρüi can be neglected. Thus, we obtain the quasistatic approximation for the
equations of motion,

Div σ + fB = 0, (2.2.1)

where ‘Div’ is the divergence operator, that is (Div σ)i = σi1,1 + . . .+ σid,d.
Equations (2.2.1) are the equilibrium equation used in the sequel. In this
approximation, at each time instant the system is in equilibrium, and the
external forces are balanced by the internal stresses. Thus, the trajectories of
the system in the phase space lie on the equilibrium hyper-surfaces.

2.3 Constitutive Relations

The relationship between the stresses in the body and the resulting strains
characterizes a specific material the body is made of, and is given by the con-
stitutive law or relation. It describes the deformations of the body resulting



2.3 Constitutive Relations 13

from the local action of forces and tractions. In this book, we consider, within
the framework of small deformations, linear or nonlinear elastic, viscoelas-
tic and viscoplastic materials. We also consider problems involving consti-
tutive laws for thermoelastic and thermoviscoelastic materials in Sects. 10.4
and 10.5, respectively. In this section the variables have physical dimensions.

A linear elastic constitutive law is given by

σ = Belε, (2.3.1)

where Bel is a fourth-order elasticity tensor. In component form, the consti-
tutive equation (2.3.1) reads

σij = bijklεkl,

where the bijkl are the elasticity coefficients, which may be functions of po-
sition in a nonhomogeneous material, and εkl = εkl(u).

A general viscoelastic constitutive law is given by

σ = Aveε̇ + Bveε, (2.3.2)

where, ε̇ = ε(u̇), Bve is a nonlinear elasticity operator and Ave is the (local)
viscosity operator, both of which may depend on the position.

In linear viscoelasticity σ = (σij) is given by the Kelvin-Voigt type of
relation

σij = aijklεkl(u̇) + bijklεkl(u), (2.3.3)

where the bijkl and aijkl are the elasticity and viscosity coefficients, respec-
tively, which may be functions of position. For symmetry reasons, when d = 3,
there are at most 21 different coefficients in each tensor. When the material
is isotropic and homogeneous, it is characterized by only four constants: the
two Lamé coefficients λ1 and λ2 and two viscosity coefficients a1 and a2,

σij = (λ1εkk(u) + a1εkk(u̇)) δij + 2 (λ2εij(u) + a2εij(u̇)) .

Here, δij is the Kronecker symbol, i.e. δij represent the components of the
unit matrix Id. If we wish to use a model with one viscosity coefficient a, we
may use

σij = λ1εkk(u)δij + 2λ2εij(u) + aεij(u̇).

The viscosity terms in either one of the conditions above depend on the
velocity, are local or pointwise in time, and represent short term memory.
Nonlocal, or long term memory viscoelastic terms can be found in the liter-
ature, see, e.g., [5, Ch. 7] or [73, Ch. 3] (see also [83] and references therein),
and have the form ∫ t

0
aijkl(t− s)εkl(u(s)) ds,

where now the aijkl depend on time and may be viewed as the components
of an integral kernel of the relaxation tensor.
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A Maxwell-Norton model of a viscoelastic material was employed in [84]
to describe the solidification of aluminium (see also references therein). Since
in this model the viscosity rate is assumed to be a function of the stress, the
model is given by

Aerε̇ − σ̇ = λ0‖σD‖q−2σD.

Here, σD is the deviatory part of σ, i.e., σD = σ − (1/3)Tr(σ)Id,
(1/3)Tr(σ)Id is the hydrostatic pressure, Id is the d × d identity matrix
and ‖ · ‖ is a matrix norm; Aer is the tensor of elasticity; and λ0 is a material
constant and q ≥ 2 is a material exponent, both determined experimentally.

Other ways of modelling the viscous response of materials can be found
in the references above and in the references therein.

We shall comment on the relationship between problems for viscoelastic
and elastic materials below. Formally, one obtains the elastic constitutive
relation from the viscoelastic one when the viscosity vanishes, and there are
few contact problems for which this limit has been rigorously established.
However, as we indicate below, passing to the limit often results in a drop
(sometimes quite dramatic) in the regularity of the solutions, and may also
result in the loss of uniqueness.

To describe an elastic-viscoplastic material we use a rate-type constitutive
relation

σ̇ = Avpε̇ + Gvp(σ, ε). (2.3.4)

Here, Avp is the elasticity operator, assumed to be linear, and Gvp is a non-
linear viscoplastic operator, that depends on both the stress and the strain
tensors, and may depend on the position, as well.

Rate-type viscoplastic relations of this form have been used to describe the
behavior of rubber, metals, pastes and rocks, among others (see, e.g., [74,75]
and references therein). Perzyna’s law, given in (6.4.10) below, is of this type
(see, e.g., [5]).

A one-dimensional example of a viscoplastic operator Gvp in (2.3.4) is

Gvp(σ, ε) =




−a1F1(σ − f∗(ε)) if σ > f∗(ε)
0 if f∗(ε) ≤ σ ≤ f∗(ε)
a2F2(f∗(ε) − σ) if σ < f∗(ε).

Here, a1 and a2 are viscosity coefficients, f∗, f∗ are plastic yield limits, and
F1, F2 are given functions. We refer the reader to [75,85] for the details.

Constitutive relations that include thermal effects will be described in
Sect. 3.1, and those with material damage in Sect. 3.4.

Finally, we remark that for historical reasons the elasticity operator, in
the constitutive relations above, is denoted by Bel, Bve and Avp, however,
we hope that no confusion will arise, since the indices make the distinction
among them. We continue to use this notation since this is what the reader
will find in the quoted literature.
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2.4 Boundary Conditions

We now turn to the boundary conditions. The surface Γ is assumed to be
Lipschitz, and thus, at almost every point the outer unit normal vector n =
(n1, . . . , nd) is defined. We also assume that meas(ΓD) > 0, and remark on
this assumption below. The following decompositions of vectors and tensors
on Γ will be used frequently. If v is a vector field defined on Γ then vn
denotes the normal component of v and vτ denotes the projection of v on
the tangent plane of Γ , and they are given by

vn = v · n, vτ = v − vnn.

We note that vn is a scalar, while vτ is a tangent vector to Γ . Similarly, the
normal component and the tangential components of a tensor σ are denoted
by σn and στ , and are given by

σn = (σn) · n, στ = σn − σnn,

where σn is a scalar while στ is a tangent vector to Γ . Here and below, ‘ · ’
represents the inner or the scalar product for vectors and tensors; we also
use ‖ · ‖ to denote the Euclidean norm of vector and tensor quantities. In
components,

σn = σijninj , (στ )i = σijnj − σnni.

The body is held fixed on ΓD, so we use the homogeneous Dirichlet con-
dition,

u = 0 on ΓD. (2.4.1)

Known tractions fN act on ΓN , so we use the Neumann condition

σn = fN on ΓN . (2.4.2)

We remark that all the results below hold true when ΓN = ∅. Also, replac-
ing condition (2.4.1) with u = uD, the nonhomogeneous Dirichlet condition,
introduces no further difficulties, for a given uD lying in an appropriate func-
tion space.

On the other hand, the assumption that meas(ΓD) > 0 is essential in
quasistatic problems. Otherwise, mathematically, the problem becomes non-
coercive and many of the results below do not hold. This accurately reflects
the physical situation, since when meas(ΓD) = 0 the body is not held in
place, but may move freely in space as a rigid body, such as in the punch
problem. In such a case the quasistatic approximation is invalid, unless cer-
tain restrictions are made on the direction and size of the applied forces and
tractions, and the compatibility of the data is guaranteed.
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2.5 Dimensionless Variables

At this point we need to address the physical units of the various variables
and quantities, and the related dimensionless variables. The problems we
present contain many physical and system coefficients and parameters but
very often the solutions depend only on certain combinations of these and
not necessarily on each one separately.

In this short section we describe the nondimensionalization of the vari-
ables. We denote the quantities with physical dimensions, in cgs, (cm, gm, sec)
units, with tilde and the dimensionless ones without it. For the sake of sim-
plicity we deal with the three-dimensional case, as the two-dimensional case
is similar. We note that there are more than one way to set a given problem
in a dimensionless form, and below we present only one such choice.

The components of x̃ = (x̃1, x̃2, x̃3), are measured in [cm], and so are
the components ũ1, ũ2, ũ3 of the displacements vector ũ, and the gap g̃. The
time t̃ is measured in [sec], and the material density ρ̃ in [gm/cm3], which
throughout the book is assumed to possibly depend on the position, but not
on the time. The components of the body force f̃B = (f̃B1, f̃B2, f̃B3) have
the dimensions of [dyne/cm3] = [gm/cm2 ·sec2], those of the surface traction
f̃N the dimensions of force per unit area, [dyne/cm2] = [gm/cm · sec2], and
the components σ̃ij of the stress tensor σ̃ have the same dimensions.

Let L [cm] be a typical length in the system under consideration, L∗ [cm]
a typical displacement, and T ∗ [sec] a typical time unit. We define the di-
mensionless variables by

xi =
x̃i
L
, ui =

ũi
L∗ , for i = 1, 2, 3, t =

t̃

T ∗ .

Everywhere below we use the symbols Ω,ΓD, ΓN and ΓC to denote the
reference configuration and the three portions of its surface in dimensionless
variables. Moreover, we let the dimensionless gap function be

g(x) =
1
L∗ g̃(x̃),

and we scale it with L∗ since we will often be dealing with the difference
ũn − g̃.

It follows from the above that

∂

∂x̃i
=

∂

L∂xi
, for i = 1, 2, 3,

∂

∂t̃
=

∂

T∂t
,

and the new (dimensionless) strain tensor is

ε = ε(u) =
L∗

L
ε̃(ũ).
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We assume throughout the book, that ρ̃(x̃) = ρ0ρ(x), where ρ0 is a (typ-
ical scaling) constant with dimensions [gm/cm3], and ρ(x) is a dimensionless
function of the dimensionless variable x.

We define the dimensionless components of the forces by

fBi =
(T ∗)2

ρ0 L∗ f̃Bi,

and of the linearized stresses

aijkl =
T ∗

ρ0 L2 ãijkl, bijkl =
(T ∗)2

ρ0 L2 b̃ijkl,

where the ã’s and b̃’s are the components of the viscosity tensor Ave and
either Bel or Bve, as the case may be. Then, in the linear case, we have the
stress tensor

σij = aijklεkl(u̇) + bijklεkl(u).

When the tensors are nonlinear one has to perform a similar transforma-
tion separately in each case. For the sake of simplicity, in the rest of this
section we deal only with the linear cases.

An appropriate choice of the scaling factors L∗ and T ∗ often allows to re-
duce the number of the coefficients in the equations. Indeed, when the mate-
rial is viscoelastic with one viscosity coefficient, homogeneous, and isotropic,
if we choose

T ∗ =
(
ρ0L

2

2λ̃2

)1/2

, λ =
λ̃1

2λ̃2
, a =

ã√
2ρ0λ̃2L2

,

we obtain that 2λ̃2 = 1, and

σij = λεkk(u)δij + εij(u) + aεij(u̇).

In other problems, different choices of L∗ and T ∗ will lead to different
scaled coefficients.

The dynamic and quasistatic equations of motion retain exactly the same
form in the dimensionless variables and coefficients introduced above.

To deal with the surface tractions we note that condition (2.4.2) is written
now as σ̃ñ = f̃N . Let n be the dimensionless unit outward normal to ΓN . If
the surface traction f̃N is nondimensionalized as

fN =
(T ∗)2

ρ0L∗L
f̃N ,

then (2.4.2) reads
σn = fN ,

in dimensionless variables.
In the rest of the book, except for Chap. 4, we use dimensionless variables,

and in appropriate places we discuss this issue further. We always denote
quantities with dimensions by a tilde, except in Chap. 4.
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2.6 Contact Conditions

Real surfaces that are being used in engineering and other applications are
very far from idealized mathematical surfaces. They have undulations or as-
perities, and the description of contact processes by boundary conditions
need to address surfaces that may be clean, or contaminated with oil or gas;
contain layers of adsorbed gas or an oxide layer; are very smooth, smooth,
rough or very rough. There may be debris scattered on the surface which
may be harder or softer than the surface material, thus causing degradation
of the surface or acting as a lubricant, respectively. The material properties
of the surfaces are very often very different from those of the parent material.
Moreover, the layers adjacent to the contacting surface have a major influ-
ence on the contact processes. For more details we refer the reader to [13]
and references therein.

Therefore, we expect that different mathematical boundary conditions
may be employed to describe the wide variety of the conditions prevailing
on contacting surfaces. Below we describe the ones that are currently in use.
But, there is a need to extend and widen the range of possible conditions
modelling the responses of real surfaces. This is one of the important areas of
future research and we comment on it in Chap. 14. However, there seems to
exist a mismatch between the way tribologists and engineers, especially those
dealing with experiments, approach the issue and the mathematical need to
describe the processes as boundary conditions that can be incorporated into
the formulations of the models.

We use the dimensionless variables described above, and explain in some
places how to obtain the new ones.

We now turn to the various conditions on the contact surface ΓC , which is
where our main interest lies. These are divided, naturally, into the conditions
in the normal direction and those in the tangential direction.

The so-called bilateral contact describes the situation when contact be-
tween the body and the foundation is maintained at all times. It can be
found in many machines and in moving parts and components of mechanical
equipment. Then, there is no gap, g = 0, and

un = 0. (2.6.1)

The term ‘bilateral contact’ has this meaning throughout this monograph.
However, in the engineering literature ‘bilateral contact’ sometimes means
that the system is restricted to move between two obstacles or foundations.
As an example, one may consider the vibrations of a beam between two stops.

The so-called normal compliance condition describes a reactive founda-
tion. It assigns a reactive normal traction or pressure that depends on the
interpenetration of the asperities on the body’s surface and those on the
foundation. A general expression for the normal reactive traction on ΓC is

−σn = pn(un − g), (2.6.2)
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where pn(·) is a nonnegative prescribed function which vanishes when its
argument is nonpositive. Indeed, when un < g there is no contact and the
normal pressure vanishes; and when contact takes place un − g (≥ 0) is a
measure of the interpenetration of the surface asperities. In recent literature
one can find the following choice

−σn = cn(un − g)mn
+ ,

where cn is the surface stiffness coefficient, mn is the normal compliance
exponent, and (f)+ = max{f, 0} is the positive part of f . The condition
was first introduced in [11, 12] and since then used in many publications,
see, e.g., [13–15,20,32,44,48,51] and references therein. In these articles the
values of the exponent mn were restricted because of the use of the Sobolev
embedding theorem. In [86] special spaces were introduced which allowed the
use of arbitrary values of the exponent mn.

If we write the condition in dimensional form, we have

−σ̃n = c̃n(ũn − g̃)mn
+ ,

and c̃n has the dimensions [gm/cmmn+1 · sec2]. To set the condition in di-
mensionless form we let

cn =
(T ∗)2(L∗)mn−1

ρ0L
c̃n,

where the meaning of the various constants can be found in Sect. 2.5. The
other contact conditions are nondimensionalized similarly.

The contact pressure σn is nonpositive. Indeed, during contact it is com-
pressive and thus negative, and otherwise the point is free and it vanishes.

We note that in the normal compliance condition when contact has just
been established or about to be lost un = g and the normal pressure vanishes.
This is not the case in bilateral contact or when the Signorini condition (to be
described shortly) is used. Then, the pressure need not be zero and, generally,
will not vanish when un = g.

An idealization of the normal compliance, which is used often in engi-
neering literature, and can also be found in mathematical publications, is
the Signorini contact condition , in which the foundation is assumed to be
perfectly rigid. It is obtained, formally, from the normal compliance condi-
tion in the limit when the surface stiffness coefficient becomes infinite, i.e.,
cn → ∞ above, and thus interpenetration is not allowed. It can be stated in
the following complementarity form

un − g ≤ 0, σn ≤ 0, σn(un − g) = 0. (2.6.3)

Here, the foundation is rigid, so un ≤ g, the contact pressure is nonpositive,
and either σn = 0 when there is no contact, or un = g during contact.

The condition is elegant and easy to write, however, the underlying ide-
alization causes severe mathematical difficulties in dynamic problems. Since
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in this monograph we deal with relatively slow process, there is some merit
in using it in models for static or quasistatic contact, and below we describe
various results for problems containing it. Moreover, in finite-dimensional ap-
proximation or discretization of such problems it leads to the linear comple-
mentarity formulation of the problem, which is sometimes used in numerical
simulations. But even in the cases when it seems a reasonable approximation,
such as in biomechanical applications, or in the description of the contact of
a solidifying material with a mold ( [84]) and some other quasistatic pro-
cesses, it leads to substantial mathematical difficulties and the solutions are
considerably less regular than those with the normal compliance condition.

Next, when dealing with granular or wet surfaces, the normal reaction
may be a function of the surface velocity, thus, we use the normal damped
response condition,

−σn = pndr(u̇n). (2.6.4)

Here, pndr is a nonnegative function which vanishes when its argument is
nonpositive. One may use, more specifically,

−σn = cndr(u̇n)mdr
+ .

This condition describes the normal reaction which is active only when the
surface element is moving towards the foundation, and vanishes when it is
moving away. It has been used in [51,87–90] as well as in [91–96].

The normal damping coefficient c̃ndr has the dimensions [gm/cmmdr+1 ·
sec2−mdr ], and then

cndr =
(L∗)mdr−1

ρ0L(T ∗)mdr−2 c̃ndr.

When the damped response is active in both directions, i.e., there is damp-
ing when the body approaches the foundation and when it is receding from
it, one may modify the condition and use

−σn = pndr(|u̇n|),

where pndr has the same behavior as above, namely, a nonnegative function
that vanishes at zero.

We now turn to the conditions in the tangential directions. The simplest
one is the so-called frictionless contact condition,

στ = 0. (2.6.5)

This is an idealization of the process, since even completely lubricated sur-
faces generate shear resistance to tangential motion. Actually, when the sur-
face is fully lubricated, the lubricant flow generates a tangential shear stress
which is transmitted to the body’s surface. More details can be found in
Sect. 2.7 below.
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However, following current practice, we refer to (2.6.5) as the frictionless
condition. We concentrate only on dry contact, for publications dealing with
lubrication we refer the reader to [66,68] and references therein.

Frictional contact is usually modelled with the Coulomb law of dry friction
or a version thereof. According to this law, the tangential traction στ can
reach a boundH, the so-called friction bound, which is the maximal frictional
resistance that the surfaces can generate, and once it has been reached, a
relative slip motion commences. Thus,

‖στ‖ ≤ H, στ = −H u̇τ
‖u̇τ‖

if u̇τ �= 0. (2.6.6)

Here, u̇τ is the relative tangential velocity or slip rate, and once slip starts,
the frictional resistance has magnitude H and is opposing the motion. The
bound H depends on the process variables, and we describe this dependence
next.

Often, especially in engineering publications, the friction bound H is
chosen as

H = H(σn) = µ|σn|, (2.6.7)

where µ is the coefficient of friction, which is described in more details in
Sect. 2.7. The original formulation by Coulomb or Amontons had been pro-
posed for the description of contact between rigid bodies, and using it to
describe contact between deformable bodies in the point-wise sense, that is,
assuming that the law holds at each point of contact, is more recent.

In mathematical papers, until very recently, µ was assumed to be a con-
stant, and this still holds true in many mathematical and engineering publi-
cations, where it is usually used together with the Signorini condition (2.6.3).
However, it is very well know experimentally that µ depends on the relative
sliding speed, on the temperature and it varies with the process as the surface
topography changes due to wear. We describe the dependence of µ on these
variables in the next section.

The choice of (2.6.7) in (2.6.6) leads to severe mathematical difficulties
(see, e.g., [13]) since, generally, the stress σ is only square-integrable, not
necessarily continuous, and does not have a well defined trace or value on
ΓC . Therefore, one must give appropriate meaning to σn and στ and to the
contact conditions in which they are used. When these are used with (2.6.3),
the mathematical difficulties are significantly increased. Indeed, in a number
of papers the normal stress σn has been regularized so as to give meaning to
the frictional contact condition (see, e.g., [6,9,16,17,22,25,33]). A discussion
of the regularization can be found in Sect. 8.5, however, as we point out there,
currently there is no reasonable derivation of the regularization operator from
physical principles, and it remains an important unresolved problem.

The choice
H = pτ (un − g), (2.6.8)
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is compatible with the normal compliance contact condition (2.6.2). Here,
pτ is a nonnegative function which vanishes when its argument is nonpos-
itive, i.e., when there is no contact. In the literature it is called tangential
compliance. Combining (2.6.7) with (2.6.2) we find

H = µpn(un − g). (2.6.9)

For this reason, keeping in mind (2.6.8), the choice pτ = µpn can be found
often in the literature.

In dimensional form, H̃ has the units of pressure, [gm/cm · sec2] and so
does the normal compliance function p̃n, and then the friction coefficient µ̃
is dimensionless. To set the quantities in dimensionless units we define

H =
(T∗)2

ρ0LL∗ H̃, pn =
(T∗)2

ρ0LL∗ p̃n, µ = µ̃,

using the scaling in Sect. 2.5, which yields (2.6.9).
In certain applications, especially when the loads are light, or the friction

is large, or when the load is very large and the real contact area among the
asperities is close to the nominal one, i.e., the area where there is no actual
contact is small, the function H behaves as a constant, which in the literature
is called the Tresca friction law, thus,

H = const. (2.6.10)

This condition simplifies the analysis considerably, and on occasions makes
it possible. Sect. 2.8 deals with the relationship between the Coulomb and
the Tresca conditions, and points out to a possible transition from the first
to the second.

When the wear of the contacting surface is taken into account, a modified
version of the Coulomb law is more appropriate. This condition has been
derived in [97–99] from thermodynamic considerations, and is given by

H = µ|σn|(1 − δ|σn|)+, (2.6.11)

where δ is a very small positive parameter related to the wear constant of
the surface. However, if we use the normal compliance condition (2.6.2) then

H = µpn(1 − δpn)+, (2.6.12)

which may be recovered from (2.6.8) with the choice pτ = µpn(1 − δpn)+.
On a nonhomogeneous surfaceH depends on the position x on the surface,

and on the wear of the surface. As is described in the next section, it also
depends on the relative slip speed and on the temperature. In some geological
applications it has been assumed to depend on the relative slip, instead of
relative slip rate, [100,101].

Finally, we note that condition (2.6.6) describes an isotropic surface. If
the surface is anisotropic, say, it has grooves, then an anisotropic friction
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condition has to be used. To describe it let {τ 1, τ 2} be a system of two
orthogonal unit tangent vectors at each point of the surface, one of which is
oriented along the grooves and the other orthogonal to them, and let H1 and
H2 be the corresponding friction bounds. These may be very different, since
it is much easier to move along the grooves than in a direction perpendicular
to them. Then, we require that

|στ1 | ≤ H1, |στ2 | ≤ H2,

στ1 = −H1
u̇τ1
|u̇τ1 |

if u̇τ1 �= 0,

στ2 = −H2
u̇τ2
|u̇τ2 |

if u̇τ2 �= 0.

Here, στ1 and στ2 are the components of στ in the directions of τ 1 and τ 2,
respectively, while uτ1 and uτ2 are the components of uτ .

This condition can be found in [90]. Other anisotropic conditions may
be used when the tangential stresses are coupled, see, e.g., [13, 102–104] and
references therein.

The versions of the the friction law, described above, are characterized
by the existence of stick-slip zones on the contact boundary. Slip motion
occurs only when the tangential shear reaches a critical value, that of the
friction bound. In the case when the contact surface is lubricated, slip takes
place even when the tangential shears are small. Such a phenomenon may be
modelled by a friction law in which the shear stress is proportional to the
tangential speed and can be found in Sect. 7.4.

2.7 Friction Coefficient

We observe that the friction coefficient µ is not an intrinsic thermodynamic
property of a material, a body or its surface, since it depends on the contact
process and the operating conditions. It is defined as the ratio between the
normal stress and the modulus of the tangential stress on the contact surface
when sliding commences, and there is no theoretical reason for this ratio to
be a well defined function. It seems that the case of a rigid body resting
on an inclined rigid plane, or more generally, static contact between ‘rigid’
bodies, is the exception. This may explain the difficulties in the experimental
measurements of the friction coefficient.

The issue is considerably complicated by the following facts. Engineering
surfaces are not mathematically smooth surfaces, but contain asperities and
various irregularities. Moreover, very often they contain some or all of the fol-
lowing: moisture, lubrication oils, various debris, wear particles, oxide layers,
and chemicals and materials that are different from those of the parent body.
Therefore, it is not surprising that the friction coefficient is found to depend



24 2 Evolution Equations, Contact and Friction

on the surface characteristics, on the surface geometry and structure, on the
relative velocity between the contacting surfaces, on the surface temperature,
on the wear or rearrangement of the surface and, therefore, on its history, and
other factors which we skip here. A very thorough description of these issues
can be found in [78] (see also the survey [13]). However, and it is somewhat
surprising, the concept of a friction coefficient is found to be sufficiently use-
ful to be employed almost universally in frictional contact problems. Indeed,
there seems to be no generally accepted current alternative to it.

In tribology the so-called Stribeck curve , Fig. 2, is usually used to describe
the variation of the friction coefficient with lubrication, see, e.g., [72,78,105]
and references therein. Three main regimes of lubrication are identified. In
the boundary lubrication regime ((bl) in Fig. 2) the lubricant layer is very thin
and contact stresses are transmitted via physical contact among the surface
asperities on the contacting surfaces, and the friction coefficient has a higher
value. In the hydrodynamic lubrication regime ((hl) in Fig. 2) the lubricant
layer is sufficient to prevent physical contact and contact stresses are trans-
mitted via the lubrication layer, and the friction coefficient is rather low. In
the mixed lubrication regime ((ml) in Fig. 2) there is physical contact between
the tips of the asperities and the space between the contacting surfaces is full
of lubricant; contact stresses are transmitted both by asperity contact and
by the lubricant, and the friction coefficient varies from its ‘bl’ value to the
‘hl’ value.

The Stribeck curve depicts the friction coefficient as a function of a di-
mensionless parameter that is related to the lubricant viscosity, the relative
slip speed, the surface roughness and the averaged contact pressure. It is de-
creasing in the ‘bl’ regime, slopes down rather steeply in the ‘ml’ regime and
reaches a lower value in the ‘hl’ regime, where it curves up slightly.

����
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µ

hlmlbl

�

�

Fig. 2. The Stribeck curve
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Typical measured or assumed values of the friction coefficient are as fol-
lows ( [78]). In lubricated contact (hl) the values of the friction coefficients
are in the range µ ∼ 0.05 − 0.1. In the ‘ml’ regime they are in the range is
0.15 − 0.3, and so are the values in the lower end of dry friction (bl). Large
values of the coefficient are 0.5 − 1.0. When µ exceeds these, it becomes dif-
ficult to measure it, since often the system exhibits seizure, and the surfaces
become locked. When the tangential shear is increased, a layer of the mate-
rial near the surface tears out and the whole process changes catastrophically.
Currently, there are no mathematical models or results that address such a
behavior.

Using the Stribeck curve for the friction coefficient µ is somewhat compli-
cated, when considered from the mathematical point of view, as contrasted
with just incorporating it into a numerical code. Indeed, if we choose the
dimensionless parameter l∗ as

l∗ =
ηlvslip
pRS

,

where ηl is the dynamic viscosity of the lubricant, vslip = ‖u̇τ‖ is the relative
slip speed, p is an averaged contact pressure and RS is the surface roughness,
then, assuming in addition that ηl/RS = εS is a constant, we may write

µ = µ

(
εS

‖u̇τ‖
|σn|

)
.

Therefore, if we assume that the friction bound is given by H = µ|σn|, then
we have

H = µ

(
εS

‖u̇τ‖
|σn|

)
|σn|.

This dependence of the friction coefficient on the contact stress makes the
formulation of the friction condition more complicated than seems to be nec-
essary. As will be seen below, such friction conditions with slip rate dependent
friction coefficient have been studied recently, but without the term |σn| in
the denominator of the argument of µ.

We note that a change of labels in Fig. 2 makes it more useful math-
ematically. If we multiply both variables by p = |σn|, then, the horizontal
axis is labeled with l∗∗ = ηlvslip/RS (instead of l∗), and the vertical axis
is now labeled with the friction bound H = µp. Retaining the same curve,
the relationship between the friction bound and the dimensionless or scaled
slip speed seems to be reasonable. However, the friction coefficient is a more
complicated function since it is inversely proportional to the contact pressure.
Moreover, as is pointed out in Sect. 2.8, such a condition has to be modified
at large contact pressures.

Until very recently, mathematical models for frictional contact used a
constant friction coefficient, mainly for mathematical reasons. This is rapidly
changing, and the dependence of µ on the process parameters has been incor-
porated into the models in recent publications. The first result on quasistatic
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contact with slip rate or total slip rate dependent friction coefficient can be
found in [21], where the friction coefficient was assumed to depend on the
slip rate or on the total slip rate, thus,

µ = µ(‖u̇τ‖), or µ = µ(
∫ t

0
‖u̇τ‖ ds). (2.7.1)

The dependence on the process history via the total slip rate
∫ t
0 ||u̇τ || ds takes

into account the morphological changes undergone by the contacting surfaces
as the process goes on.

A friction coefficient which depends on the slip rate has been employed
in dynamic cases in [106–108] where the nonuniqueness of the solution and
possible solutions with shocks were investigated in a special setting.

In some geological publications on the motion of tectonic plates the fric-
tion coefficient is assumed to depend on the slip and not the slip rate, thus,

µ = µ(‖uτ‖),

see [100,101] and references therein.
The dependence of µ on the temperature may be considerable, as can be

seen in [78] and references therein. The quasistatic problem with temperature
dependent coefficient, in addition to the slip rate, i.e.,

µ = µ(‖u̇τ‖, θ)

has been investigated in [42].
The usual assumption when µ is not constant is that it is a Lipschitz

function of its arguments. This seems very reasonable in many applications.
However, there are cases when the transition from the static to the dynamic
value is rather sharp, and a graph may better describe the situation. It has
been assumed in some engineering publications, and there is clear evidence
for it in simple experimental settings, that the drop in the value of the fric-
tion coefficient from a higher static value to a lower dynamic value may cause
instabilities (see [106–108]). Indeed, such a system may exhibit shocks, i.e.,
discontinuous or sharply changing solutions. It has been established in [106]
that in the dynamic case for an elastic body there may be a continuum of solu-
tions, and it was conjectured there that the maximum delay condition would
yield the unique solution that the system would realize physically. It may very
well be that the solution chosen by the maximum delay condition coincides
with the unique viscosity solution, obtained in the limit of vanishing viscos-
ity when the material is assumed to be viscoelastic. These two conjectures
are related, and of considerable importance and settling them is a very chal-
lenging problem. Dynamic problems with discontinuous friction coefficient,
assumed to be a graph with a vertical segment at zero slip rate (connecting
the dynamic and static values), have been investigated in [33,34,36].

The dependence of the friction coefficient µ on the location x on the con-
tacting surface, when the surface is not homogeneous, is easy to incorporate
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into the mathematical models, but is rarely made explicit, except for possi-
bly mentioning it in passing. On the other hand, it is well documented that
such dependence may be very pronounced. Indeed, in experiments on ax-
isymmetric stretch forming in [105, 109] the friction coefficient was found to
vary steeply from a value close to zero at the center to about 0.3 at the edge,
with a very sharp transition region in between which was found to depend
on the forming speed (Fig. 3 on page 142 in [105]). We will remark on this
dependence in the problems below. It may be of interest to model such sharp
transitions using a discontinuous idealization, as in [33, 34]. This topic is of
fundamental importance and it is likely to be investigated in the near future.

Frictional contact in metal forming processes was investigated in [105,109,
110]. Since in such processes contact stresses are very large and plastic flow
of the surface asperities is considerable, the friction coefficient was assumed
to depend on the surface strain rate. By adding an empirical correction for
surface roughening they obtained a good correlation with experiments. To
our knowledge, the dependence of µ on the strain has not been investigated
in the mathematical literature, although the normal compliance condition
may turn out to approximate it well.

Finally, in most geological publications dealing with earthquakes the fric-
tion coefficient is assumed to depend on the slip rate, but in some it is assumed
to depend on the slip, see, e.g., [100, 101]. Moreover, it may depend on an
internal variable or several variables and also on the temperature. Indeed,
the so-called Dieterich-Ruina model (see, e.g., [101]) is

µ = µ0 −A ln
(

1 +
‖u̇τ‖
v∞

)
+B ln

(
1 +

η(t)
η0

)
,

where µ0 is the static friction coefficient, v∞ is the maximal slip velocity in
the system, and η is an internal variable describing the surface, and whose
equation of evolution is given by

dη

dt
= 1 − η‖u̇τ‖

L∗ ,

where L∗, A,B are adjusted system parameters.
The possible dependence of µ on the temperature, discussed below, has

been modelled in [111] as

µ = µ0 +A

(
ln

‖u̇τ‖
v∞

+
QA
R

(
1
θ

− 1
θ∗

))
+Bη,

where θ∗ is a reference temperature, andQA and R are additional parameters.
More elaborate expressions can be found in [101], and we refer the reader

there and the references therein, and also to [60] and the references therein.
However, the well-posedness of models with such friction conditions is, as yet,
an unsolved problem.
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2.8 On Coulomb and Tresca Conditions

We now discuss shortly the relationship between the Coulomb and the Tresca
friction conditions. Detailed explanations can be found in [72,78,105] and the
references therein, and in [112] where the real contact area issue is discussed.

We consider contact between a hard (rigid) smooth tool and an elastic-
plastic workpiece. According to [105, p. 140], the Coulomb condition is useful
when the contact is elastic, within the boundary lubrication regime (‘bl’ in
Fig. 2) and when the nominal contact pressure (obtained by dividing the
total load by the area of the contact surface) is relatively small, as compared
to the hardness of the workpiece material. In such a case contact takes place
at the tips of the asperities, and there is a considerable difference between
the averaged contact pressure and the maximal pointwise pressure at the
tips. If we assume that the tips deform plastically, then the contact pressure
at the tips has essentially the plastic yield value. Moreover, the fractional
real contact area A is small and may be assumed to be proportional to the
averaged pressure. When the contact stresses increase the fractional contact
area grows, until there is almost complete plastic flattening of the asperities,
and the fractional contact area is close to unity. When this state is reached,
the frictional shear stress will reach saturation, and any further increase in
the normal pressure will not lead to an increase in the tangential frictional
resistance. Therefore, we have a natural transition from the Coulomb to the
Tresca laws, depicted in Fig. 3.

|σn|

H(σn)

HT

�

�

Fig. 3. The friction bound H(σn) vs. normal stress

We may use the following expression for this relationship between the
friction bound H and the normal pressure,

H(σn) = HT (1 − exp(−µ|R(σn)|/HT )),



2.8 On Coulomb and Tresca Conditions 29

which reduces to the Coulomb law when the contact pressure is small. Here,
HT is the Tresca friction bound which is also a scaling factor and the reg-
ularization operator R has been used either to average the contact pressure
or to give it meaning, or both. When using normal compliance, one has to
replace the contact pressure |R(σn)| with pn(un − g).

The normal compliance condition takes such a behavior into account when
the normal compliance function is assumed to be bounded. However, it is
rather ad hoc, and the boundedness of the normal compliance function in
(2.6.2) is often used for mathematical reasons, to which the discussion above
gives some support.

It is of considerable importance to obtain the curve of H vs. |σn| in Fig. 3
experimentally. Then, such a friction law, with the transition from frictional
shear that is proportional to the averaged contact pressure to a constant value
when the real fractional contact area is close to unity, may be very useful in
applications where contact pressures are likely to vary from very small to
very large values. Moreover, this will simplify some of the mathematical ma-
nipulations, which typically are more difficult to deal with when the friction
bound is unbounded. We note that condition (2.6.11) is not of this form, and
is related to the wear of the contacting surface.

Clearly, modelling of contact and friction is an important topic, which
is currently under investigation. As better frictional contact conditions for
specific applications are obtained, better mathematical models and more ac-
curate and reliable numerical simulations will result.
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More is involved in contact than just friction, although it is the main process.
Indeed, during a contact process elastic or plastic deformations of the surface
asperities may happen. Also, some or all of the following may take place:
squeezing of oil or other fluids, breaking of the asperities’ tips and production
of debris, motion of the debris, formation or welding of junctions, creeping,
fracture, etc. Moreover, frictional contact is associated with heat generation,
which, in turn, may influence the process considerably by softening the surface
material, causing structural changes, or even melting it.

In this chapter we describe conditions that model some of the other pro-
cesses involved in contact. We begin, in Sect. 3.1, with ways of including
thermal effects into the models. In addition to the heat equation for the
body temperature, we discuss frictional heat generation and the heat ex-
change condition when the heat exchange coefficient depends on the gap or
the contact pressure.

In Sect. 3.2 we describe the wear of the surfaces as a result of friction. It
is customary in the mathematical literature to model it with a differential or
rate version of the Archard condition, (3.2.1), which is a rate condition for
wear production. However, it does not allow for the diffusion or motion of
the wear debris on the surface. When the wear particles or debris are harder
than the surface material additional wear is caused. When the wear particles,
such as certain metallic oxides, are softer they may act as solid lubricants.

Some surfaces may include adhesive agents, such as glues. The addition
of adhesion into models of contact is recent. The adhesion process may be
reversible, as in velcro, or irreversible, as is the case with most common glues.
In Sect. 3.3 the topic is presented, and the evolution of the adhesion is also
described by (rate equation) (3.3.2) for an irreversible process or the rate
equation with right-hand side given in (3.3.4) when it is reversible and with
memory or history dependent.

The modelling of material damage, in the form presented in Sect. 3.4 is
recent, and, unlike the conditions mentioned above, it enter the models via
the constitutive relations. The issue is very important in applications, and is
likely to receive increased attention in the near future.

M. Shillor, M. Sofonea, J.J. Telega: Models and Analysis of Quasistatic Contact, Lect. Notes
Phys. 655, (2001), 31–47
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004
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3.1 Thermal Effects

Contact and friction processes are invariably accompanied by heat generation,
which may be considerable. Sudden braking of a car can cause more than
100 HP of power to be dissipated in the form of heat which needs to be
transported away from the wheels and the braking system.

Thermal effects in contact processes affect the composition and stiffness of
the contacting surfaces, and cause thermal stresses in the contacting bodies.
Moreover, the contacting surfaces exchange heat, and energy is lost to the
surroundings. The way heat affects the mechanical properties of a contact
surface can be, partially, taken into account by assuming that the friction
coefficient is temperature dependent [78] (see also [72,111,113,114]).

To take into account thermal effects we need four elements: frictional
heat generation condition, a condition describing heat exchange between the
body and the foundation, a constitutive relation and the energy equation.
We discuss each one of these in turn.

Frictional heat generation is the power dissipated during the process and
is assumed to be proportional to the tangential shear stress and to the slip
rate. The power generated by the friction traction on the contact surface is
given by ( [43,44,78,99]),

qf = ‖στ‖ ‖v∗ − u̇τ‖ = µ|σn| ‖v∗ − u̇τ‖, (3.1.1)

where v∗ is the tangential velocity of the foundation, u̇τ is the tangential
velocity of the surface and µ = µ(‖v∗−u̇τ‖, θ) is the slip rate and temperature
dependent friction coefficient. To take into account the effects of this energy
flow in the system we need to describe the heat exchange between contacting
surfaces. But first, in dimensional form we have

q̃f = ‖σ̃τ‖ ‖ṽ∗ − ˜̇uτ‖ = µ̃|σ̃n| ‖ṽ∗ − ˜̇uτ‖,
where q̃f has the dimensions of [gm/sec3] = [erg/cm2 · sec], i.e., energy flow
per unit area per unit time; then, using the scaling in Sect. 2.5 and µ = µ̃,
we obtain (3.1.1) by setting

qf =
(T ∗)3

ρ0L(L∗)2
q̃f .

The second element is the thermal interaction between surfaces in contact,
and it has been the subject of [115–122] (see also references therein for further
works), where the stability of the steady states were investigated, and of
[123]. In [115, 118] the heat exchange between the contacting point and the
foundation was assumed to be ideal, i.e., perfect conduction when there is
contact and complete insulation when contact is lost. Then, it was shown
that such a condition is actually an over-idealization, since mathematically
it leads to infinitely fast oscillations. For this reason two more realistic heat
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exchange conditions were proposed and investigated in [123]. For the sake of
completeness a short description of these two conditions follows.

The pointwise heat exchange condition on ΓC is customarily given by

−kijni
∂θ

∂xj
= ke(θ − θR) − qf ,

where kij are the components of the thermal conductivity tensor K, nj are the
components of n, θ is the pointwise surface temperature, qf is the power gen-
erated by friction in the form of heat, ke is the heat exchange coefficient and
θR is the known temperature of the foundation. The usual assumption, both
in engineering and mathematical publications dealing with thermal problems,
is that the heat exchange coefficient is constant.

However, as has been indicated above, in processes involving contact ke
is not constant but a function of the gap or distance between the surface
and the foundation, if there is no contact, and of the contact pressure oth-
erwise (see [124, 125] and also [113]). The dependence of the heat exchange
coefficient on the pressure, under large stresses, is well documented (see the
references in [124, 125]). We now obtain an elegant dimensionless variable η
which represents both the contact pressure, when there is contact, and the
gap, when there is separation. In dimensional form we define it as

η̃ = (g̃ − ũn) + η∗σ̃n,

where η∗ is a conversion factor with dimensions [cm2 · sec2/gm], so that
η̃ has the dimensions of [cm]. Now, g̃ = L∗g and ũn = L∗un, and, also
σ̃n = (ρ0LL

∗/(T ∗)2)σn, and if we choose T ∗ = (η∗ρ0LL
∗)−1/2 we obtain

that the dependence is on the dimensionless, ‘natural’ and elegant variable
η = η∗/L∗, given by

η = g − un + σn.

It was introduced in [123], and it takes into account both the contact pressure
and the separating gap: when there is no contact un < g, σn = 0, therefore
η > 0 and it measures the distance between the point and the foundation;
when there is contact un = g and σn ≤ 0, thus, η ≤ 0 and it measures the
contact pressure. When η = 0 the contact has just been established or lost.
In this manner the variable η unifies the description of the heat exchange
coefficient, and so ke = ke(η).

Two forms of dependence of ke on η were investigated in [123]. In the first
case ke(η) was assumed to be a Lipschitz continuous function, in particular,
continuous at the point of initiation or loss of contact (η = 0), Fig.4a. In the
second case ke was chosen as the graph,

ke(η) =



kcon(η) if η < 0
[ ksep(0), kcon(0)] if η = 0
ksep(η) if η > 0

.

Here, when contact takes place ke = kcon(η) is a function of the contact
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Fig. 4. (a) The function ke(η); (b) the graph ke;
η < 0 – contact; η > 0 – separation.

pressure; when there is no contact ke = ksep(η) is a function of the gap. As
contact is established or lost the value of the heat exchange coefficient lies in
the interval [ksep(0), kcon(0)]. The graph is depicted in Fig. 4(b).

The graph reflects the experimental fact that it is very complicated to
measure the heat exchange coefficient when contact has just been established
or lost ( [124, 125]). At the moment of initiation of contact certain surface
asperities come in contact and deform during the contact period. After con-
tact is lost and reestablished other asperities are likely to come into contact,
changing the value of the heat exchange coefficient. Therefore, at least for
surfaces with relatively large and possibly soft asperities, the heat exchange
coefficient may vary widely at the onset of contact. Thus, the graph (b) in
Fig. 4 may represent the process better than the function (a). Indeed, mea-
surements of the electrical conductivity at the onset of contact exhibit a
similar behavior (see, e.g., [124,125] and references therein).

The idealized case discussed in [115,118] may be described by the graph

ke(η) =




∞ if η < 0
[0, ∞) if η = 0
0 if η > 0

,

that is formally obtained from the one in Fig. 4(b) by setting kcon = ∞,
which means that the contact is perfect, and ksep = 0 which represents perfect
insulation. The experimental results in [124,125] and in the references therein,
clearly indicate that such a choice is an over-idealization that is physically
incorrect and mathematically leads to infinitely rapid oscillations.

Contact problems with thermal effects where the coefficient of heat ex-
change was assumed to be a function of η were investigated in [123] (see
also [126] and references therein) in a one-dimensional setting. The problem
in which ke was assumed to be a graph such that kcon = const. can be found
in [127].
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The third element in taking into account thermal effects is related to the
constitutive relation of the material. A thermoviscoelastic relation, taking
into account the thermal expansion of the material is given, generally, in the
form

σ = Aveε̇ + Bveε − Mθ,

where Bve is the elasticity operator, Ave is the viscosity operator and M is
the tensor of thermal expansion. A thermodynamic derivation of this relation
can be found in Chap. 4.

We recall that in linear thermoviscoelasticity σ̃ = (σ̃ij) is given by

σ̃ij = ãijklε̃kl(˜̇u) + b̃ijklε̃kl(ũ) − m̃ij θ̃,

where θ̃ is the temperature, measured in degrees centigrade, 0C, (from some
reference temperature Θref chosen as zero), the b̃ijkl, ãijkl, and m̃ij are the
elasticity, viscosity, and thermal expansion coefficients, respectively. The lat-
ter have the dimensions of [gm/cm · sec2 · 0C]. To write it in dimensionless
form we multiply it by (T ∗)2/ρ0LL

∗, let θ∗ be some representative system
temperature, and define the new dimensionless temperature and thermal ex-
pansion coefficients by

θ =
θ̃

θ∗ , mij =
(T ∗)2θ∗

ρ0LL∗ m̃ij ,

and we obtain the dimensionless constitutive relation

σij = aijklεkl(u̇) + bijklεkl(u) −mijθ.

The other dimensionless variables can be found in Sect. 2.5.
When the material is isotropic we have

σ̃ij = ãε̃ij(˜̇u) + λ̃1ε̃kk(ũ)δij + 2λ̃2ε̃ij(ũ) − α̃(3λ̃1 + 2λ̃2)θ̃,

where λ̃1 and λ̃2 are the Lamé coefficients, ã the viscosity coefficient and α̃
the coefficient of thermal expansion. Thus, the material is characterized by
four coefficients.

A thermoelastic constitutive relation is obtained by neglecting the viscos-
ity part, thus

σ = Belε − Mθ,

and the linearized version is

σij = bijklεkl(u) −mijθ.

When, in addition, the material is isotropic the constitutive relation is

σij = λ1εkk(u)δij + 2λ2εij(u) − αθδij

in dimensionless variables.
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The fourth and last element is the equation of energy. An equation that
takes into account the viscous heat generation (see, e.g., [96] and references
therein and also Chap. 4) is given by

θ̇ − (κijθ,i),j +mij(θ +Θref )u̇i,j − aijklε(u̇)ijε(u̇)kl = qvol.

Here, θ is the temperature which is measured with respect to Θref , where
the latter is the (absolute) temperature of the isothermal stress-free reference
configuration. The term qvol represents a volume heat source, such as electri-
cal heating. The third term on the left-hand side is nonlinear and is usually
linearized by replacing θ+Θref with the temperature Θref . The last term on
the left-hand side is the internal viscous heat generation, which is also non-
linear. Often, when the linear heat equation is used, this term is completely
neglected.

Quasistatic contact problems with thermal effects can be found in [39,
42, 128–130], where general settings were employed; dynamic problems were
investigated in [41, 43–45, 89, 96, 131–134]; while one-dimensional problems
can be found in [126,127,135–139]. Modelling and numerical simulations can
be found in [97–99, 140, 141]. We refer the reader to the references in these
publications for further details.

3.2 Wear

As the contact process evolves, the contacting surfaces evolve too, via their
wear. Wear in sliding systems is often very slow but it is persisting, continuous
and cumulative. There may be increase in the conformity of the surfaces and
their smoothness, or increase of the surface roughness, fogging of the surface,
generation of scratches and grooves, initiation of cracks and generation of
debris which may change the contact characteristics. Friction processes are
invariably related to the production of wear particles and debris.

Asperities under large contact stresses may deform plastically or break. In
the first case the surface morphology changes and, therefore, both the contact
stress and the friction traction are affected. These may be incorporated into
a history or memory dependent friction coefficient. In the second case, when
asperities break, the surfaces wear out, debris are produced, and again the
surface structure changes over time. This must be taken into account if the
long time behavior of the system is to be realistically predicted. The broken
particles may remain on the surface and act as a lubricant, if they are made of
a material that is softer than the surface material, or may cause grooves and
damage to the surface, if they are harder. These changes in the surface affect
the contact process. There exists a large engineering literature on the subject
due to its crucial role in the design of long term proper functioning of mechan-
ical components. However, the processes involved in the wear of contacting
surfaces are very complicated and it seems that more sophisticated models
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will be needed in the near future. Indeed, it is customary to distinguish among
the following wear types: adhesive, abrasive, contact fatigue, fretting, oxida-
tion, corrosion and erosion (see, e. g., [46,54,78,97–99,142–144]). The model
for wear that is used very frequently is based on Archard’s observations, [145],
and will be described shortly. The inclusion of wear in mathematical mod-
els is very recent, see, e. g., [20, 34, 44, 54, 135, 136, 146–150] and references
therein.

To model the wear of the contacting surfaces the wear function w =
w(x, t), for x in ΓC , is introduced, measuring the depth, in the normal direc-
tion, of the removed material. Therefore, it measures the change in the sur-
face geometry, and represents the cumulative amount of material removed,
per unit surface area, in the neighborhood of the point x up to time t. Since
the amounts of material removed are small, as an approximation, one may
treat it as a change in the gap, and so g is replaced by g+w. Thus, in (2.6.2)
we use pn(un − w − g) and in (2.6.8) we use pτ (un − w − g).

In dimensional form w̃ has the dimensions of [cm] and we scale it, similarly
to g̃ with L∗, thus w = w̃/L∗.

It is usually assumed that the rate of wear of the surface is proportional
to the contact pressure and to the relative slip speed, that is to the dissipated
frictional power. This leads to the rate form of Archard’s law of surface wear,

ẇ = kw|σn| ‖u̇τ‖, (3.2.1)

where kw is the wear coefficient, a very small positive constant in practice.
The dimensionless rate equation is obtained from the one with dimensions,

˙̃w = k̃w|σ̃n| ‖ ˙̃uτ‖,

if we use the variables introduces in Sect. 2.5 and define

kw =
ρ0LL

∗

(T ∗)2
k̃w.

Here, k̃w has the dimensions of [cm · sec2/gm].
The initial condition is w(x, 0) = w0(x) on ΓC , and when the surface is

new or the initial shape is used as the reference configuration w0 = 0. When
the stress is given by the normal compliance condition (2.6.2) we obtain

ẇ = kwpn(un − w − g)‖u̇τ‖. (3.2.2)

Archard’s law can be used with the other contact conditions, besides normal
compliance, although, to our knowledge, there are very few mathematical
results which combine (3.2.1) with the other ones. Indeed, an approximate
problem with bilateral contact can be found in [22], and a problem with
normal damped response and wear was studied in [90].

In engineering publications Archard’s law is usually stated in the form
w = kwPL, where P is the nominal contact pressure (the total load applied
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on the system divided by the nominal contact area) and L is the total slip.
Clearly, this is a surface averaged and time integrated version of condition
(3.2.1), namely,

w(t) =
1

|ΓC |

∫
ΓC

w(x, t) dS

=
1

|ΓC |

∫
ΓC

w0(x)dS +
kw

|ΓC |

∫
ΓC

∫ t

0
|σn(x, s)| ‖u̇τ (x, s)‖ ds dS,

where |ΓC | denotes the area or measure of ΓC . Thus, the total volume of
material removed over the time period [0, t] is w(t)|ΓC |.

When the foundation itself is moving with prescribed velocity v∗ = v∗(t),
we need to replace u̇τ with u̇τ −v∗ in the Coulomb and Archard laws above,
and all the results below hold in this case, too.

In the case of contact with normal compliance and wear, condition (3.2.2)
can be derived, following [97–99], from the friction and wear pseudo-potential
function

F(στ , σn, w) = ‖στ‖ − µpn + kwpnw.

The condition is obtained from the requirement that (u̇τ , ẇ) lies inNF (στ , w),
the normal cone to the set F = {(στ , σn, w) : F(στ , σn, w) ≤ 0}. However,
the derivation there depends on the assumption that µ and kw are constants,
and such a derivation needs a more delicate analysis when the friction and
wear coefficients depend on the sliding speed and other process variables. See
Chap. 4 for a related discussion.

Although condition (3.2.1) is very popular, there is a clear need for more
sophisticated description of some of the wear processes. Indeed, condition
(3.2.1) does not distinguish between a process that causes deep grooves and
a one which produces a smooth and conforming surface. This may be taken
into account, in part, by assuming that the friction coefficient depends on
the wear, thus,

µ = µ(‖u̇τ‖, θ, w, . . .).

Moreover, a basic underlying assumption in (3.2.1) is that the wear par-
ticles are instantly removed from the surface and so they are not involved in
the process. However, very often the debris remain on the surface, migrate
on it and contribute to the wear process. When the wear particles are (rel-
atively) hard they may cause further wear, produce grooves and cracks and
cause damage to the surface. When they are (relatively) soft they may act as
a lubricant. Therefore, there is a need to take into account the migration of
the wear particles and their further contribution to the contact process. The
problem is very important in implants and a computational approach can be
found in [151]. A modeling step in this direction can be found in [143]. A
simple ad hoc mathematical approach to the diffusion of wear particles on
the contact surface can be found in [152,153].
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Finally, we note that there is a distinction between mild wear and severe
wear, and the transition from one type to the other depends on the contact
pressure, as well as on the chemical composition and the environment (such
as humidity, or supply of oxygen). In metals, mild wear describes the process
when the oxide layer remains intact and the wear is slow. On the other
hand, in severe wear the oxide layer is broken, and there is direct contact
between the metallic asperities. The rate of wear in the latter case is usually
unacceptable in many applications. The transition from one type of wear to
the other seems to be rather abrupt, and may be modelled with a stress
dependent wear coefficient. This topic seems to be of practical importance
and deserves a mathematical study, which may turn out to be quite involved
if one assumes that kw = kw(σn).

3.3 Adhesion

Processes of adhesion are important in many industrial settings where parts,
usually nonmetallic, are glued together. Recently, composite materials, made
of layers of simple materials, reached prominence since they are very strong
and light and, therefore, of considerable importance in aviation, space explo-
ration, and the automotive industry. However, under stress composite ma-
terials my undergo delamination in which different layers debond and move
relative to each other. This is one of the reasons for the importance of the
adhesive process in industrial applications.

The adhesive contact between bodies, when a glue is added to prevent
relative motion of the surfaces, has received recently increased attention in
the mathematical literature, because of its industrial interest. Basic modelling
can be found in [154–159]. Analysis of models for frictionless adhesive contact
can be found in [160–169]. In [163] the problem of a beam in adhesive contact
can be found, in [164] the adhesive quasistatic contact of a membrane was
investigated and simulated, and in [165] the dynamic problem was shown to
have a weak solution. Related models can be found in [148,149] and references
therein. Moreover, a new application of the theory is in the medical field of
arthoplasty where the bonding between the bone-implant and the tissue is of
considerable importance, since debonding may lead to decrease in the persons
ability to use the artificial limb or joint (see [148,149] and references therein).

The novelty in these papers (except for [169]) is the introduction of a
surface internal variable, the bonding field or the adhesion field β, which de-
scribes the pointwise fractional density of active bonds on the contact surface,
and sometimes is referred to as the ‘intensity of adhesion.’ This variable is
dimensionless by its definition. We refer the reader to the extensive bibliog-
raphy on the subject in [157, 158] and in [148], and a short description of
the modelling can be found in Chap. 4. Following Frémond [65,154,155], we
introduce the bonding field β = β(x, t) defined on the contact surface ΓC ,
which has values between 0 and 1. When β = 1 at a point of ΓC , the adhesion
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is complete and all the bonds are active; when β = 0 all the bonds are severed
and there is no adhesion; when 0 < β < 1 the adhesion is partial and only a
fraction β of the bonds is active.

The glue on the contact surface introduces tension that opposes the sepa-
ration of the surfaces in the normal direction, and opposes the relative motion
in the tangential directions. The adhesive tensile traction is assumed propor-
tional to β2 and the displacements. The evolution of β depends on β and the
displacements. We refer the reader to the monograph [65] for full details, and
to Chap. 4 for a short derivation.

If we assume, as in [160–162,166], that the compressive part of the normal
stress is described by normal compliance (2.6.2) and there is no gap (g = 0),
then the normal compliance contact condition with adhesion is given by

−σn = pn(un) − γnβ
2(−RLb

(un))+,

where pn is the normal compliance function and γn is the saturation constant
of the surface density of bonding energy. In dimensional form γ̃n has the
dimensions of [gm/cm2 · sec2], and by letting γn = ((T ∗)2/ρ0L)γ̃n we obtain
the above relation. Moreover, RLb

: R → R is the truncation operator

RLb
(s) =




−Lb if s < −Lb
s if − Lb ≤ s ≤ Lb

Lb if s > Lb

,

where 0 < Lb is the characteristic length of the bond, beyond which it does
not offer any additional traction (see, e.g., [158]). Indeed, the introduction
of RLb

is motivated by the observation that if the extension is more than
Lb, the glue extends plastically without offering additional tensile traction.
However, by choosing Lb sufficiently large, say larger than the size of the
system, we recover the case where the traction is linear in the extension.
Thus, the contribution of the adhesive to the normal traction is represented
by γnβ

2(−RLb
(un))+; the adhesive traction is tensile, and is proportional,

with proportionality coefficient γn, to the square of the adhesion, and to
the normal displacement, but as long as it does not exceed the bond length
Lb. The maximal tensile traction is γnLb. More general expressions for this
condition can be found in [161,165].

The tangential stiffness generated by the glue is assumed to depend on
the adhesion and on the tangential displacement, but again, only up to the
bond length Lb, thus,

−στ = pτ (β)R∗
Lb

(uτ ), (3.3.1)

where the truncation operator R∗
Lb

is defined by

R∗
Lb

(v) =




v if ‖v‖ ≤ Lb

Lb
v

‖v‖ if ‖v‖ ≥ Lb
.
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Then, pτ (β) acts as the stiffness or spring constant, increasing with β, and the
traction is in direction opposite to the displacement. The maximal modulus
of the tangential traction in (3.3.1) is pτ (1)Lb.

The frictional tangential traction is assumed to be much smaller than the
adhesive one and, therefore, omitted. When it is not negligible one has to
add the frictional traction, as has been done in [148, 157, 158] (see Chap. 4
below).

The evolution of the adhesion field, following [154, 155], can be obtained
from the principle of virtual work, see Chap. 4. The following adhesion evo-
lution equation has been used recently,

k̃β
˙̃
β = −γ̃nβ̃((−RLb

(ũn))+)2.

It describes an irreversible process in which once debonding takes place it is
permanent, and there is no rebonding. Here, k̃β is the bonding rate coefficient
with dimensions of [gm/sec], since the dimensions of γ̃n are [gm/cm2 · sec2].

To set it in dimensionless form let β(x) = β̃(x̃), and define the dimen-
sionless adhesion rate constant by

γβ =
T ∗(L∗)2

k̃β
γ̃n.

Then, the dimensionless adhesion rate equation is

β̇ = −γββ((−RLb
(un))+)2. (3.3.2)

However, it is possible to consider a more general setting ( [160–162,165]),
thus,

β̇ = Had = Had(β, un,uτ , . . .).

Here, Had is the adhesion evolution rate function, and it depends on the
bonding and on the, possibly truncated, normal and tangential displacements.
In [161] it has been assumed that Had = Had(β,RLb

(un)) is a general Lip-
schitz function, which vanishes when β vanishes. Indeed, when β = 0 there
is no change in β and once β = 0 debonding is complete and no further
evolution of β is allowed, and in particular, no rebonding can take place.

Since Had may have both positive and negative values, as long as β > 0
rebonding may take place after debonding. When Had ≤ 0, as was assumed
in [148, 158, 160], the process is irreversible and once the bonds break they
cannot be reestablished.

In the description of the adhesion evolutions equations below we shall use
standard notation of convex analysis, the explanation of which can be found
in Sect. 6.3. In particular, we denote by IK the indicator function of the set
K, (6.3.4), and by ∂IK its subdifferential, (6.3.5).

A somewhat more general rate equation was used in [165], where the
dynamic adhesive contact between a membrane and a rigid obstacle, that
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had been situated under it, was investigated. The evolution of adhesion was
given by

β̇ = Had(β, u− φ) + βsub, (3.3.3)

where φ described the shape of the obstacle and u − φ was the distance of
the membrane from the obstacle; Had was assumed to be a general evolution
function such that Had(β, 0) = 0, and −βsub ∈ ∂I[0,1](β). The term βsub was
added to enforce the condition 0 ≤ β ≤ 1. The use of subdifferentials to en-
force such conditions will be explained in Chap. 4, and a fuller mathematical
description can be found in Sect. 6.3. However, for the sake of completeness
we describe it shortly here. The indicator function I[0,1](β) is given by

I[0,1](β) =




∞ if β < 0
0 if 0 ≤ β ≤ 1
∞ if β > 1

,

and its subdifferential is the graph (see Fig. 6 below)

∂I[0,1](β) =




(−∞, 0] if β = 0
0 if 0 < β < 1
[0,∞) if β = 1
∅ otherwise

.

Mathematically speaking, since −βsub ∈ ∂I[0,1](β), it follows that ∂I[0,1](β)
is nonempty, and therefore 0 ≤ β ≤ 1.

A more intuitive way to see it is as follows. When −βsub ∈ ∂I[0,1](β) then
βsub = 0 if 0 < β < 1, and as long as the two strong inequalities hold, βsub is
inactive in (3.3.3). When β = 0 then 0 ≤ βsub < ∞, and its value is chosen
automatically by the system to be such as to exactly cancel Had(0, u − φ),
when the latter is negative. It cannot be larger than |Had|, since in such a
case β̇ > 0 and in the next instant we will have β > 0 and then βsub = 0.
Thus, β̇ = 0, preventing β from becoming negative, and violating the part of
the constraint β ≥ 0. When β = 1, we have −∞ < βsub ≤ 0, and its value is
such as to exactly cancel Had(1, u− φ). Then β̇ = 0, and it prevents β from
becoming greater than 1, which violates the constraint β ≤ 1. In the case of
adhesion the inclusion of the subdifferential ∂I[0,1](β) is done to enforce the
interpretation of β as a fraction. In the case of contact forces, say in contact
with a rigid obstacle, the subgradient has a physical meaning as it describes
exactly the physical force needed to prevent penetration.

The dependence of the adhesion process on its history was taken into
account in [162]. The process was assumed reversible, rebonding of broken
bonds could take place, however, bonds undergoing rebonding were weaker
than the original ones. In such a case Had = Had(β, ψβ , RLb

(un)), where

ψβ(x, t) =
∫ t

0
β(x, s) ds
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is the history of the bonding process at the point x. The assumptions in [162]
allowed for cycles of debonding and rebonding, and the rate of the bonding
evolution was assumed to be described by

Had = Had(β, ψβ , RLb
(un)) = −γ1β ((−RLb

(un))+)2 + γ2
β+(1 − β)+
1 + d∗ψ2

β

.

(3.3.4)

Here, the normal displacement RLb
(un) causes debonding, described by the

first term on the right-hand side, while the natural tendency of the adhesive
to rebond is represented by the second term on the right-hand side. However,
rebonding becomes weaker as the process goes on, which is represented by
the factor 1+d∗ψ2

β in the denominator, where d∗ is the history weight factor,
assumed to be positive. Thus, the second term serves a long-time memory
term for the process. Also, γ1 and γ2 are the debonding and rebonding rate
constants, respectively, and are assumed to be positive.

In [160] the following form of Had has been employed,

β̇ = −(γββ((−RLb
(un))+)2 − eDu)+, (3.3.5)

where eDu is the dimensionless activation energy for debonding, and once
debonding occurs bonding cannot be reestablished, since β̇ ≤ 0. This is the
frictionless version of the debonding condition in [148, 157, 158] which are
described in more detail in Chap. 4. The activation energy ẽDu has the di-
mensions of energy per unit area, [gm/sec2], and eDu = ẽDu · T ∗/k̃β . Note
that when eDu ≈ 0 we recover (3.3.2). The activation energy acts as a thresh-
old for debonding, and only when the energy supplied to the adhesive is above
it the process of debonding will begin, and it will stop if the energy supplied
falls below this threshold.

We note that bonding rate conditions of this form, which are proportional
to β, do not allow for the complete debonding in finite time. Indeed, if we
assume that the displacements are constant, we find that the bonding field
decays as β(t) = A exp(−at). The quasistatic adhesive contact of a rod with
an obstacle was investigated recently in [170] where it was shown that when
the displacement of the other end if finite debonding will either stop in a finite
time or will take infinite time, similarly to the exponential decay above.

To allow for full debonding new specific expressions for Had need to be
derived. A general condition which allows for full debonding (β = 0) and
then rebonding, as well as debonding when fully bonded (β = 1), together
with dependence on the process history, is given by the following extension
of (3.3.3),

β̇ ∈ Had(β, ψβ , RLb
(un)) − ∂I[0,1](β).

As above, the addition of the subdifferential to the right-hand side guaran-
tees that 0 ≤ β ≤ 1, and the rate function Had(β, ψβ , RLb

(un)) may be a
rather general function of its arguments. When we attempt to model velcro
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adhesion, the history dependence seems to be unimportant. However, in other
applications many cycles of possibly full bonding and debonding take place,
and when the adhesive undergoes some degradation in each cycle, the history
dependence or the memory has to be included in the model.

The models above deal with the case when an adhesive agent, such as
a glue or velcro, is present on the contacting surfaces. The modeling of the
intrinsic adhesive component in friction, stemming from chemical bonds of
the junctions and their possible welding, needs a different approach, since it
affects directly the friction coefficient. This process is important, and may
cause the friction coefficient to increase, as the time in which the surfaces are
in the stick state increases. It may also explain the often observed fact that
the dynamic friction coefficient is smaller than the static one. This surface
bonding, especially in metals, may lead to scuffing and damage of the surfaces,
processes for which there is no current mathematical description.

Finally, artificial implants of knee and hip prostheses (both cemented and
cement-less) clearly show that at the bone-implant interface adhesion plays
an important role, see, e.g., [61] and references therein.

3.4 Damage

The constitutive assumptions on the contacting bodies were, up to now,
rather standard. However, in many materials, such as concrete, there is an
observed decrease in the load bearing capacity over time, caused by the devel-
opment of internal microcracks. The subject is extremely important in design
engineering, since it directly affects the useful life span of the structures or
components.

There exists a very large engineering literature on material damage. How-
ever, only recently models taking into account the influence of the internal
damage of the material on the contact process have been investigated math-
ematically. We describe below recent results on contact problems when the
damage of the parent material caused by tension or compression is taken into
account.

General new models for damage were derived recently in [171, 172] from
the virtual power principle. Full details can be found in [65], and a short
derivation in Chap. 4. In the engineering literature two types of damage are
usually considered, brittle damage and fatigue damage. The models below
allow for taking into account both processes; brittle damage is caused by the
growth of microscopic cracks in the material and fatigue damage is associated
with the accumulation of damage during cycles of loading and unloading.

Mathematical analysis of the evolution of damage in one-dimensional
problems can be found in [173,174], and the three-dimensional case has been
investigated in [175,176]. Here, we describe a variant of one of these models,
and we note that a number of other models for damage, based on different
considerations, can be found in the engineering literature. Related problems
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with damage can be found in the publications [81, 129, 137, 177–182] and
references therein.

The new idea of [65, 171, 172] involves the introduction of the damage
function ζ̃ = ζ̃(x̃, t̃), which is the ratio between the elastic modulus of the
damaged material and the damage-free one, and so it is dimensionless. In an
isotropic and homogeneous elastic material, let EY be the Young modulus
of the original damage-free material and Eeff be the current one, then the
damage function is defined by

ζ̃ = ζ̃(x̃, t̃) =
Eeff
EY

.

To set the problems below in dimensionless form we let

ζ = ζ(x, t) = ζ̃(x̃, t̃).

Clearly, it follows from this definition that the damage function ζ is restricted
to values between zero and one. When ζ = 1 the material is damage-free;
when ζ = 0 the material is completely damaged; when 0 < ζ < 1 there
is partial additional damage and the system has a reduced load carrying
capacity, relative to the original one.

In anisotropic materials, it is a bit tricky, but one can define the damage
field as the factor in the constitutive law that multiplies the strain term,
thus providing the relationship between the current stress and the stress
that would have been observed in the damage-free material, under the same
conditions.

The models for contact processes that take material damage into account
contain, in addition, the variable ζ. An evolution equation for the damage
field had been derived in [65] from the principle of virtual power. One may
consider the case when damage is irreversible, i.e., when cracks open, they
can only grow and no self-mending is allowed, or the reversible case when
self-mending of the microcracks may take place.

Since ζ is restricted to the values 0 ≤ ζ ≤ 1, this needs to be enforced
in the damage evolution equation. To that end, as in the previous section
when describing the bonding field, we use I[0,1](ζ) the indicator function of
the interval [0, 1], and let ∂I[0,1](ζ) be its subdifferential (Fig. 6 on page 58).
Then, an evolution equation for the damage field is (see [65] for details)

ζ̇ − kDam�ζ + ∂I[0,1](ζ) 
 φ(ε(u), ζ), (3.4.1)

and the subdifferential term guarantees that ζ remains within the interval
[0, 1]. Here, kDam is the microcrack diffusion constant, relating the ‘diffusion’
or influence of regions with higher density of microcracks on neighbouring
regions. The function φ is the damage source function and is assumed to be
a rather general function of the strain and damage itself. Moreover, it is as-
sumed in (3.4.1) that the material may recover from damage and microcracks
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may close, and therefore there is no restriction on the sign of ζ̇. If one wishes
to consider the irreversible process, referred to as ‘the unilateral phenomenon’
on occasions, when microcracks do not mend or close, one needs, in addition,
to impose the restriction ζ̇ ≤ 0. Then, the evolution equation has the form

ζ̇ − kDam�ζ + ∂I[0,1](ζ) + ∂I(−∞,0](ζ̇) 
 φ(ε(u), ζ). (3.4.2)

Here, the subdifferential term ∂I(−∞,0](ζ̇) (Fig. 7 on page 58) enforces the
condition ζ̇ ≤ 0.

In [171,172] the damage source was chosen as

φFr(ε(u), ζ) = λD

(
1 − ζ

ζ

)
− 1

2
λE ε(u) · ε(u) + λw, (3.4.3)

where λD, λE and λw are positive process parameters, to be determined ex-
perimentally. Actually, the damage source function there distinguished be-
tween damage due to compression and tension by assigning two different rate
constants, instead of the rate constant λE above. We refer the reader to these
papers and to [175,176] for further details.

We note that this damage source function has a singularity when the
damage is complete (ζ = 0), and this does not allow the damage to reach the
value zero, i.e., it precludes complete damage.

Other damage source functions can be found in the monograph [65], such
as the following one for the irreversible damage process caused only by ten-
sion,

φ = −1
2

(
1 − 1 − ζ

1 −mζζ

)(
2λ1(ε · ε)+ + λ2(tr ε)+)2

)
+ λw. (3.4.4)

Here, λ1, λ2 are the Lamé coefficients, 0 < mζ < 1 is a scaling factor, and
since only tension causes damage, one uses the positive part (i.e., the positive
eigenvalues) of the strain tensor ε, denoted by (·)+. We note that this is
different from the positive part of a scalar function (f)+, as it involves the
positive eigenvalues of the strain tensor. For details the reader is referred
to [65] and [175,176]. Unlike the damage source function above, this function
allows for complete material damage.

Quasistatic contact problems with damage have been investigated in [23,
173,178–182]. In [173] the one-dimensional contact problem was reduced to a
nonlinear parabolic equation for the damage field, since in this case the part
of the model for the displacements decouples from the one for damage. In
[178,179] viscoelastic problems with normal compliance and normal damped
response have been considered, respectively. There, (3.4.1) was used for the
evolution of the damage field. In [171–174] the evolution equation (3.4.2)
for the damage field was used, since the damage was considered irreversible.
Finally, in [23, 180–182] viscoplastic problems with damage were considered,
where it was assumed that the damage source depended on the stress field
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too, and the damage was assumed reversible. Therefore, equation (3.4.1) was
modified as follows

ζ̇ − kDam�ζ + ∂I[0,1](ζ) 
 φ(σ, ε(u), ζ). (3.4.5)

The dynamic contact problem with normal compliance and damage, with
a general damage function which may have different rates for compression or
tension, has been investigated in [176].

A major topic of interest in models for damage is the behavior of the so-
lutions when complete damage takes place. In the one-dimensional problems
complete damage at one point means the collapse of the whole system and,
mathematically, is reflected in the quenching of the solutions and blow-up of
some of the derivatives. The issue in three-space dimensions is much more
complicated and its analysis lies in the future, since quenching of the solu-
tion at a point or even over a region may not interfere noticeably with the
system’s capability to support the applied load.

Clearly, models which include the material damage are considerably more
complicated and their mathematical analysis is in its infancy. Moreover, as far
as we know, models for the damage of the contacting surfaces, as distinguished
from their wear, do not exist, yet.



4 Thermodynamic Derivation

In this chapter we present a short review of thermodynamic principles and
potentials and describe their use in derivation of general thermomechanical
conditions and equations, as applied to processes involved in contact. Works
on Thermodynamics of Continuua abound, and more specialized applications
to contact phenomena can be found in [65,97–99,183] and references therein.
We use some notions from convex analysis which will be explained in more
detail in Sect. 6.3.

The presentation here follows [65, 97, 155] and is directed toward appli-
cations to processes involved in contact, in particular in friction, wear or
adhesion. In this manner one may obtain some of the equations and con-
ditions introduced in the previous two chapters. Also, this method allows
for derivation of other laws and conditions. However, this method has some
shortcomings which we describe at the end of the chapter.

In this chapter we use variables with dimensions. To obtain the corre-
sponding dimensionless variables, quantities, and relations one may proceed
as in Sect. 2.5. However, we do not use the tilde, for the sake of simplicity,
and also we do not describe the units.

In Sect. 4.1 we provide the general formalism, based on the virtual power
principle and the entropy inequality, and derive the equations and condi-
tions for a thermoviscoelastic body. In Sect. 4.2 we describe a model for the
isothermal friction with adhesion employing the Signorini condition. A model
for isothermal friction and adhesion with the normal compliance condition
is presented in Sect. 4.3. Finally, in Sect. 4.4 we derive a new model for the
evolution of a thermoviscoelastic body with material damage. We conclude
with a short summary in Sect. 4.5.

It is seen that the formalism is a very effective method to construct models
for complicated phenomena in a rational and thermodynamically consistent
way. However, there is a considerable leeway in the choice of the free energy
function and the dissipation pseudo-potential. To be useful, in each specific
case these must be chosen so that the resulting model is capable of sufficiently
accurate prediction of the behaviour of the system under investigation.

M. Shillor, M. Sofonea, J.J. Telega: Models and Analysis of Quasistatic Contact, Lect. Notes
Phys. 655, (2001), 49–64
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004



50 4 Thermodynamic Derivation

4.1 The Formalism

We consider a thermodynamically closed system which occupies the domain
Ω ⊂ R

d (for d = 1, 2, 3 in practice) that is completely described by the vec-
tor of extensive variables: the generalized coordinates z ∈ R

d1 , the absolute
temperature ϑ ∈ R+ (or equivalently the entropy S, which is an extensive
variable) and a vector of internal variables y ∈ R

d2 , where d1 and d2 are
positive integers. The system or the body may come into contact with an-
other body, and then one may consider two deformable bodies in contact
over a common surface ΓC . This leads to somewhat cumbersome notation,
since each variable has to have an index denoting its restriction to each one
of the bodies (see, e.g., [97,154,155,158] and references therein). To simplify
the presentation, and without loss of generality, we describe the process of
contact between one deformable body and a foundation which may be rigid
or deformable. The term ‘foundation’ is used when the internal description
of the second body is of no interest.

We deal, as in Sect. 2.2, with a body that occupies the domain Ω, it is
acted upon by volume forces fB , is held fixed over the part ΓD of its surface,
is acted upon by tractions fN on ΓN , and which may come into contact with
a foundation on ΓC . The setting is depicted in Fig. 5. Also, since we include
thermal effects, we assume that volume heat sources of density rΩ (per unit
volume) are present (such as the Joule heating due to electric current).

ΓD

ΓN

ΓC

�nfoundation �vF
g−gap

���
���
���
���

fNfB

rΩ

�Ω - body

�

�

�

�

Fig. 5. The setting

The method of virtual power, which is based on the balance of power
instead of conservation of energy, and which is equivalent to the latter, has
been used in [65,97], among others, to derive the equations and the relevant
contact conditions. The evolution of the state of the system is described by
the free or Helmholtz energy potential ΨΩ and by a pseudo-potential of dissi-
pation ΦΩ , combined with the principles of energy conservation, momentum
conservation and entropy inequality. This is the usual case when either the
Dirichlet or the Neumann conditions are imposed on the boundary. In our
case, to describe the evolution of the processes on the contact surface, we
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introduce, in addition, the surface Helmholtz potential ΨC and the dissipa-
tion pseudo-potential ΦC , both defined on ΓC , and which will be described
in detail in the sequel.

First, we describe the processes that take place in Ω. We let u denote the
displacements vector, and recall that

ε = ε(u), with components εij(u) =
1
2

(ui,j + uj,i),

represents the small strain tensor, obtained by linearization. Also, the indices
i, j, k, l have values in {1, . . . , d}; an index denotes the component; an index
following a coma indicates a partial derivative with respect to the correspond-
ing spatial variable; the summation convention is employed; a dot above a
variable denotes the partial derivative with respect to time; and v = u̇.

We use the following notation,

F,i =
∂F

∂xi
, Fi,j =

∂Fi
∂xj

,

for a scalar function F and a vector function F = (F1, · · · , Fd). The gradient
operator is given by

∇F = (F,1, · · · , F,d).

Next, let ξ = (ξ1, . . . , ξd) be a vector or a tensor ξ = (ξij), then by η = ∂F/∂ξ
we mean

ηi =
∂F

∂ξi
or ηij =

∂F

∂ξij
,

respectively.
We remark that in this chapter the derivatives are understood in the usual

sense when the functions or potentials are differentiable; otherwise, they are
obtained by subdifferentiation, and are elements of the subdifferentials.

We assume, following [65,97], that

ΨΩ = ΨΩ(ϑΩ , ε(u),yrΩ), ΦΩ = ΦΩ(∇ϑΩ , ε(u̇),yirΩ ),

where ϑΩ is the absolute temperature in the body, yrΩ are the reversible
components of the vector of internal variables, and yirΩ are its irreversible
components.

Next, let ρ be the material density, (ρ̃ = ρ0ρ in the terminology of
Sect. 2.5), and let eΩ and sΩ denote the densities (per unit volume) of the
energy and entropy in Ω, respectively. It follows from the Helmholtz relation
that

ΨΩ = eΩ − sΩϑΩ . (4.1.1)

We recall that

sΩ = −∂ΨΩ
∂ϑΩ

. (4.1.2)
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Let σ = (σij) be the stress tensor. We write it as a sum of a reversible
part σr and an irreversible part σir,

σ = σr + σir,

where the two parts are given by

σr =
∂ΨΩ
∂ε(u)

, σir = ϑΩ
∂ΦΩ
∂ε(u̇)

.

The heat flux vector q is given by

q = ϑΩqir, qir = − ∂ΦΩ
∂∇ϑΩ

.

The generalized forces related to the internal reversible variables are de-
noted by Yr

Ω and those associated with the irreversible variables as Yir
Ω , and

are given, respectively, by

Yr
Ω =

∂ΨΩ
∂yrΩ

, Yir
Ω = −ϑΩ

∂ΦΩ
∂yirΩ

.

Let YΩ = (Yr
Ω ,Y

ir
Ω ) be the vector of internal generalized forces, and let

yΩ = (yrΩ ,y
ir
Ω ) be the vector of internal variables, then, the power associated

with them is P = YΩ · ẏΩ .
If Y is the generalized force associated with the internal variable y, and

Z with ∇y, then the conservation law for y (see [65, p. 5]) is

Y − div Z = fy, (4.1.3)

where fy is the density of applied volume ‘y-forces.’ The equation holds for
each such pair (y,∇y) with the associated ‘forces’ (Y,Z).

Finally, the energy and momentum conservation equations, respectively,
are

ėΩ + div q = rΩ + σ · ε(u̇) + YΩ · ẏΩ , (4.1.4)
ρü − Div σ = fB . (4.1.5)

Here, ‘Div’ and ‘div’ denote the divergence operator for tensor valued and
vector valued functions, respectively, and the dot represents the scalar prod-
uct between vectors or tensors.

These are general relations and they apply to every physical system stud-
ied in this book. To describe the evolution of a specific system one has to spec-
ify the Helmholtz potential and the dissipation pseudo-potential, together
with initial and boundary conditions.

Following [65,97,155], we choose the Helmholtz potential as

ΨΩ(ϑΩ , ε(u)) = −cpϑΩ log(ϑΩ) +
1
2

ε(u) · Bε(u) − ϑΩMε(u), (4.1.6)
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where cp is the heat capacity per unit volume, B = (bijkl) is the tensor of
elastic coefficients, and M = (mij) is the tensor of coefficients of thermal
expansion. In isotropic materials M = αId, where α is the scaled coefficient
of thermal expansion and Id is the identity matrix, sometimes denoted by
the Kronecker symbol δij .

We choose the dissipation pseudo-potential as

ΦΩ(∇ϑΩ , ε(u̇)) =
k

2ϑ2
Ω

‖∇ϑΩ‖2 +
1

2ϑΩ
ε(u̇) · Aε(u̇). (4.1.7)

Here, k > 0 is the coefficient of heat conduction, A = (aijkl) is the viscosity
tensor. In homogeneous materials all the coefficients in A,B, and M are
constants, independent of the position. It is also assumed, usually implicitly,
that the coefficients are time independent.

We assumed in (4.1.6) and (4.1.7) that there are no internal variables.
With this choice of ΨΩ and ΦΩ we obtain below the system of partial

differential equations of the model. But first, we use the above in (4.1.4) to
obtain, after some manipulations, an equivalent energy balance

ϑΩ

(
ṡΩ + div qir − r

ϑΩ

)
= σir · ε(u̇) − qir · ∇ϑΩ

= ∂ΦΩ(∇ϑΩ , ε(u̇)) · (∇ϑΩ , ε(u̇)), (4.1.8)

where ∂ΦΩ denotes the subdifferential of ΦΩ . Actually, since ΦΩ is convex
and differentiable, it is just its gradient. Since ΦΩ(0, 0) = 0 and the absolute
temperature is positive, we conclude that the right-hand side of (4.1.8) is non-
negative and, therefore, the model is thermodynamically consistent, because
the expression within the parenthesis on the left-hand side is nonnegative, as
required by the Second Law of Thermodynamics.

Next, we note that with this choice the heat flux is

q = −k∇ϑΩ .

Also,
σr = Bε(u) − ϑΩM, σir = Aε(u̇),

and the constitutive law for the thermoviscoelastic material is

σ = Bε(u) + Aε(u̇) − ϑΩM.

Now, using all of the above in (4.1.4) and (4.1.5) yields

cpϑ̇Ω − div(k∇ϑΩ) = −ϑΩMε(u̇) + ε(u̇) · Aε(u̇) + rΩ , (4.1.9)

ρü − Div (Bε(u) + Aε(u̇) − ϑΩM) = fB . (4.1.10)

When M = αId the first term on the right-hand side of (4.1.9) simplifies
and reads −αϑΩdiv u̇.
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We note that most papers on thermoviscoelastic problems employ lin-
earization of the constitutive law, and neglect the dissipation. We recall that
ϑΩ is the absolute temperature. If we let Θref represent a reference temper-
ature, such as the ambient temperature, or the temperature of the reference
configuration, usually the relative temperature θ ≡ ϑΩ −Θref is used. Then,
ϑΩ is replaced with θ on the left-hand side of the energy equation (4.1.9), and
the linearization consists of replacing ϑΩ with Θref in the first term on the
right-hand side, and omitting the second term. The latter term represents
viscous dissipation, is quadratic in the strain rates, and causes substantial
mathematical difficulties. However, recently in [184] both terms in (4.1.9)
were retained in their original form, and the existence of the unique weak
solution established for the homogeneous Dirichlet boundary condition for
the displacements, and the Neumann condition for the temperature.

In cases when thermal effects are not important, it is enough to set ϑΩ =
Θref = const. above; to neglect the heat equation (4.1.9), and the thermal
expansion term in (4.1.10), and then the constitutive law reduces then to a
generalized form of the Kelvin-Voigt law for anisotropic materials, (2.3.2),

σ = Aε(u̇) + Bε(u).

When viscous effect are neglected, too, one obtains

σ = Bε(u),

which represents an anisotropic elastic material (2.3.1). The modifications to
ΨΩ and ΦΩ in such cases are obvious.

To complete the system (4.1.9) and (4.1.10) into an initial-boundary value
problem we need to prescribe initial and boundary conditions. We assume
that we have, in addition, a pair (y,∇y) and the associated generalized forces
(Y,Z). We shall use the notation u(t) and ϑΩ(t) as a shortcut for the functions

u(t) = u(x, t), ϑΩ(t) = ϑΩ(x, t), x ∈ Ω,

respectively. The precise meaning of this statement, in terms of membership
in a function space, will be described in Sect. 6.1.

The initial conditions for the system are

u(0) = u0, u̇(0) = v0, ϑΩ(0) = ϑΩ0, y(0) = y0,

where, u0,v0, ϑΩ0 and y0 are known functions, and it is assumed that the
equation (4.1.3) for y is of the first order in time, otherwise one has to modify
the initial condition appropriately.

Now, on ΓD we prescribe a Dirichlet condition for the displacements, the
internal variable and for the temperature, say,

u = uD, ϑΩ = ϑΩD, y = yD.
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On ΓN we prescribe Neumann conditions,

σn = fN , −k∂ϑΩ
∂n

= h(ϑΩ − ϑamb), −λyZ · n = fyN ,

where h is the coefficient of heat exchange, and ϑamb is the ambient tem-
perature, which may be different from Θref . Also, fyN is the surface ‘force’
related to y.

Other combinations of boundary conditions are possible, but we shall not
dwell upon them here, except for mentioning that below ϑΩ is prescribed on
ΓD ∪ ΓN .

Our interest lies in the processes of friction and adhesion on the contact
surface ΓC . We assume that the contact surface represents a fictitious thin
boundary layer, the interface, which is assigned thermodynamic properties
that are different from those of the parent material. This accurately reflects
the fact that engineering surface have characteristics that are often markedly
different from those of the bulk materials.

We introduce the surface Helmholtz potential ΨC , the surface dissipation
pseudo-potential ΦC , and we let eC and sC be the surface energy and entropy
densities, per unit area, respectively. Moreover, we assign it its own absolute
temperature ϑC . Then, as in (4.1.1), we have ΨC = eC − sCϑC , and sC =
−∂ΨC/∂ϑC , as in (4.1.2).

For the sake of simplicity, we omit the subscript C, but, below, we retain
the subscript Ω for the traces or values on ΓC of quantities belonging to the
parent material.

We follow the same ideas and steps as above. First, we rewrite yr, which
contains the reversible components of the vector of internal variables, and
yir the irreversible components. To add adhesion, we introduce, following
[65,97,158], the surface variable β, the fractional density of active bonds.

The adhesion process was described in Sect. 3.3, and we recall that β ∈
[0, 1] to retain its interpretation as a fraction. When β = 1 all the bonds are
active, when β = 0 they are all broken, and when 0 < β < 1 it measures
the fraction of active bonds. We associate with β the thermodynamic force
Yβ . Then Yβ β̇ is the rate of energy or power needed to break the bonds,
causing debonding on the surface. It is possible to introduce the reversible
and irreversible parts of the adhesion process, as is indicated below.

The wear process was described in Sect. 3.2. As a result of the contact
surface debris are formed and the surface topography changes. We associate
with wear function w, which measures the debris depth, the thermodynamic
force Yw, and the rate of energy loss due to wear is Ywẇ. We note that wear
is an irreversible process. However, as was shown in [97], a derivation of the
wear condition is somewhat more complicated, it uses the notion of the dual
of the dissipation pseudo-potential, and will not be pursued here any further.

Next, we assume that the normal displacement un is reversible, while
in the tangential direction the displacement can be decomposed as uτ =
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urτ + uirτ , where urτ is the reversible part of the displacement and uirτ is the
irreversible part.

Now, the surface energy potential and dissipation pseudo-potential are

Ψ = Ψ(un,urτ , β, ϑ), Φ = Φ(uirτ , u̇
ir
τ , β̇,∇ϑ).

For the sake of generality we assume that the dissipation includes the gradient
of ϑ on the boundary.

As above,

σn =
∂Ψ

∂un
, σrτ =

∂Ψ

∂urτ
, Y rβ =

∂Ψ

∂β
,

are the associated reversible thermodynamic forces. The irreversible or dissi-
pative ones are given by

σirτ = θ
∂Φ

∂uirτ
, Y irβ = θ

∂Φ

∂β̇
,

and στ = σrτ + σirτ and Yβ = Y rβ + Y irβ .
Moreover, we allow for heat conduction on the surface and the heat flux

vector q is given by

q = −ϑ ∂Φ

∂∇ϑ.

The virtual power or energy rate equation on the surface ΓC is

ė+ div q = σnu̇n + στ · u̇τ + qΩ , (4.1.11)

where qΩ is the limiting value or trace of the body heat flux on ΓC , i.e., the
heat flux from the body into the (fictitious) surface.

At this stage we do not consider the momentum equation on the boundary.
This may be of interest when a rigorous asymptotic derivation, using a thin
surface layer and passing to the limit, is attempted. The issue remains an
interesting open problem; however, some progress in special cases has been
reported in [185].

Since Ψ = e− sϑ, and ṡ ≥ qΩ/ϑΩ it follows from (4.1.11) that

Ψ̇ ≤ σnu̇n + στ · u̇τ − sϑ̇− q · ∇ϑ
ϑ

+
qΩ
ϑΩ

(ϑΩ − ϑ),

where the last term on the right-hand side describes the heat exchange be-
tween the surface, with temperature ϑ, and the body, with temperature on
the surface (the trace) ϑΩ . By using the dissipation pseudo-potential we guar-
antee that the dissipation condition holds true.

To obtain specific models we need to specify Ψ and Φ. Once these are
given, the rest follows from the procedure above.

We provide, next, three detailed examples of such choices and the models
they yield.
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4.2 Isothermal Unilateral Contact
with Friction and Adhesion

In the first example we follow [158] and derive a model for the isothermal
frictional contact with irreversible adhesion. Here, the absolute temperature
ϑ is constant and by scaling the variables we may set it as ϑ = 1, and it will
not be mentioned any further in this subsection.

First, we assume that the foundation is completely rigid. Let I(−∞,0] and
I[0,1] be the indicator functions of the sets (−∞, 0] and [0, 1], respectively.
These functions have the value zero when the argument is within the set, and
∞ when it is not. Adding them to the energy potential makes it energetically
‘too expensive’ for the system to violate the constraints they represent. Since
the foundation is rigid we have the constraint un − g ≤ 0, where g is the gap
function (see Fig. 5).

The free energy is chosen as

Ψ(un,uτ , β) =
1
2
λn(un − g)2β2 +

1
2
λτ‖uτ‖2β2 − eDuβ

+I(−∞,0](un − g) + I[0,1](β). (4.2.1)

Here, λn and λτ are the normal and tangential stiffness coefficients, as-
sumed to be positive constants. Mechanically, the normal and tangential stiff-
nesses are λnβ2 and λτβ

2, respectively. The so-called Dupré surface energy
eDu measures the amount of energy needed to debond a unit of surface area.
Finally, the term I(−∞,0](un − g) enforces the condition un − g ≤ 0, and
I[0,1](β) enforces the constraints 0 ≤ β ≤ 1. These will be explained in more
detail below.

Clearly, Ψ(0, 0, 0) = 0, Ψ ≥ 0, and Ψ is convex in each one of the variables,
separately.

The dissipation pseudo-potential is chosen as

Φ(u̇τ , β̇) = µ|σn − λn(un − g)β2| ‖u̇τ‖ +
1
2
λβ β̇

2 + I(−∞,0](β̇). (4.2.2)

Here, µ is the coefficient of friction, assumed to be a positive constant and
λβ is the debonding rate constant (which is independent of β). The term
I(−∞,0](β̇) enforces the irreversibility of the adhesion process, since it means
that β̇ ≤ 0 and rebonding cannot happen.

We shall use the notation

∂fΦ(f, · · ·)

for the subdifferential of Φ with respect to f , holding all other variables fixed,
and similarly for Ψ .
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Using Ψ and Φ we obtain the following conditions on the contact surface:

σrτ ∈ ∂uτ
Ψ = λτβ

2uτ , (4.2.3)

−σrn ∈ ∂unΨ = λn(un − g)β2 + ∂unI(−∞,0](un − g), (4.2.4)

−Y rβ ∈ ∂βΨ = (λn(un − g)2 + λτ‖uτ‖2)β − eDu + ∂βI[0,1](β), (4.2.5)

σirn ∈ ∂u̇nΦ = 0, (4.2.6)

σirτ ∈ ∂u̇τ
Φ = µ|σn − λn(un − g)β2| ∂u̇τ

‖u̇τ‖, (4.2.7)

Y irβ ∈ ∂β̇Φ = λβ β̇ + ∂β̇I(−∞,0](β̇). (4.2.8)

Here and below, we use the notion of a subdifferential explained in Sect. 6.3.
In particular, the subdifferential of the indicator function IK , (6.3.4), is given
by (6.3.5).

Before we proceed and for the sake of completeness, we present the explicit
forms of the subdifferentials in (4.2.3)–(4.2.8). We begin with

∂I[0,1](s) =




(−∞, 0] if s = 0,
0 if 0 < s < 1,
[0,∞) if s = 1,
∅ otherwise.

(4.2.9)

The subdifferential is depicted in Fig. 6 (thick lines).
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s

Fig. 6. The subdifferential ∂I[0,1](s)

The way this subdifferential is used in (4.2.5) is as follows (see also
Sect. 3.3). Let −Yβ ∈ ∂I[0,1](β). If 0 < β < 1, then it follows from (4.2.9)
that Yβ = 0, and the subdifferential does not contribute to the condition. If
β = 0 then −Yβ ∈ (−∞, 0], so that 0 ≤ Yβ , and the generalized force is acting
exactly to prevent β from becoming negative. If β = 1 then −Yβ ∈ [0,∞), so
that Yβ ≤ 0, and the generalized force is acting to prevent β from exceeding
β = 1.

Next,

∂I(−∞,0](s) =




0 if − ∞ < s < 0,
[0,∞) if s = 0,
∅ otherwise.

(4.2.10)
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The subdifferential is depicted in Fig. 7 (thick lines).

0 s

�

Fig. 7. The subdifferential ∂I(−∞,0](s)

We use it in (4.2.4) to enforce the nonpenetration condition un − g ≤ 0.
Let −σn ∈ ∂I(−∞,0](un − g). It follows from (4.2.10) that σn = 0 when
un − g < 0. But, if un − g = 0, then −σn ∈ [0,∞), thus σn ≤ 0 and it has
the exact value that prevents interpenetration, i.e., g < un.

Also,

∂|s| =




−1 if − ∞ < s < 0,
[−1, 1] if s = 0,

1 if 0 < s < ∞.

(4.2.11)

The subdifferential is depicted in Fig. 8 (thick lines).
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Fig. 8. The subdifferential ∂|s|

Finally, let B1 = {s ∈ R
d : ‖s‖ ≤ 1} be the unit ball in R

d, then for a
vector s we have,

∂‖s‖ =




B1 if ‖s‖ = 0,
s

‖s‖ , if 0 < ‖s‖ < ∞.
(4.2.12)
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That is, the subdifferential of the function f(s) = ‖s‖ is the unit vector in
the direction of s when ‖s‖ �= 0, and is the whole unit ball B1 when ‖s‖ = 0.

We note now that σrn = σn, since it is assumed reversible and σirn = 0;
στ = σrτ + σirτ . Following [158] we assume that there are no sources fβ , and
since Ψ does not depend on ∇β then Zβ = 0, and it follows now from (4.1.3)
that Yβ = 0. Using these facts and the expressions for the subdifferentials we
may rewrite ths system (4.2.3)–(4.2.8) in the following form.

The Signorini condition with adhesion in the normal direction is

un − g ≤ 0, −σn − λn(un − g)β2 ≤ 0, (σn − λn(un − g)β2)(un − g) = 0,

which is condition (2.6.3) when adhesion is absent, i.e., λn = 0. Note that
with adhesion, when there is no contact (un < g) the adhesive normal traction
is σn = λn(g − un)β2, and the normal stiffness is λnβ2.

In the tangential direction we find the friction condition with adhesion,

σrτ = λτuτ (un − g)β2,

‖σirτ ‖ = ‖στ − λτuτ (un − g)β2‖ ≤ µ|σn − λn(un − g)β2|,

u̇τ �= 0 ⇒ σirτ = −µ|σn − λn(un − g)β2| u̇τ
‖u̇τ‖

.

This condition reduces to the usual Coulomb law, (2.6.6), when there is no
adhesion, λn = λτ = 0 and H = µ|σn|.

Next, we obtain the equation of evolution for the adhesion field,

λβ β̇ ∈ eDu − (λn(un − g)2 + λτ‖uτ‖2)β − ∂I[0,1](β) − ∂I(−∞,0](β̇),

which may be written as

β̇ ≤ 0,
λβ β̇ = −

(
eDu − (λn(un − g)2 + λτ‖uτ‖2)β

)
− , if 0 ≤ β < 1,

λβ β̇ ≥ −
(
eDu − (λn(un − g)2 + λτ‖uτ‖2)β

)
− , if β = 1.

We note that debonding starts only when the energy term (λn(un − g)2 +
λτ‖uτ‖2)β is larger than the Dupré energy eDu, and the process is irre-
versible, as β̇ ≤ 0.

The frictionless condition with adhesion is obtained from the above when
one sets µ = 0.

4.3 Isothermal Contact with Normal Compliance,
Friction and Adhesion

If we wish to study the frictional contact problem with adhesion between
a viscoelastic body and a reactive foundation, modelled with the normal
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compliance condition (2.6.2), instead of the Signorini condition, we need to
modify both Ψ and Φ as follows. Here too, since the absolute temperature ϑ
is constant we may scale it as ϑ = 1.

Let Pn(r) be a smooth, nonnegative and nondecreasing function such that
Pn(r) = 0 when r ≤ 0, and let pn = P ′

n (the prime denotes the derivative),
and so pn ≥ 0, and pn(r) = 0 when r ≤ 0. Then, we replace the indicator
function I(−∞,0](un − g) in (4.2.1) with Pn(un − g). As an example, one
may choose Pn(r) = (1/2)λnc(r+)2, and we note that the Signorini condition
is obtained, formally, in the limit λnc → ∞. Moreover, since the adhesive
traction acts only when there is separation, and does not contribute when
there is interpenetration, we use (un − g)− = max{0, g − un}. Thus,

Ψnc(un,uτ , β) =
1
2
λn((un − g)−)2β2 +

1
2
λτ‖uτ‖2β2 − eDuβ

+Pn(un − g) + I[0,1](β).

The modified dissipation pseudo-potential, (4.2.2), is

Φnc(u̇τ , β̇) = µpn(un − g) ‖u̇τ‖ +
1
2
λβ β̇

2 + I(−∞,0](β̇).

Then, following the procedure above we obtain

−σrn ∈ ∂un
Ψnc = λn((un − g)−)β2 + pn(un − g),

σirτ ∈ ∂u̇τΦnc = µpn(un − g)∂u̇τ ‖u̇τ‖.

While the other variables remain the same as in (4.2.3)–(4.2.8). Therefore,
the normal compliance with adhesion is described by,

−σn = pn(un − g) + λn((un − g)−)β2,

and the friction condition is,

σrτ = λτuτ ((un − g)−)β2,

‖σirτ ‖ = ‖στ − λτuτ ((un − g)−)β2‖ ≤ µpn(un − g),

u̇τ �= 0 ⇒ σirτ = −µpn(un − g)
u̇τ

‖u̇τ‖
.

We recall that σrn = σn, since σirn = 0 and στ = σrτ + σirτ .
We note that in this model the adhesive contributes only to the reversible

part of the tangential traction.

4.4 Thermoviscoelastic Material with Damage

We follow [65] and derive the constitutive relations and the evolution equa-
tions for a thermoviscoelastic material with damage. We assume that the



62 4 Thermodynamic Derivation

damage process is reversible or self-mending, depends on the damage gradi-
ent, and the damage field satisfies 0 ≤ ζ ≤ 1.

We choose the Helmholtz energy as

ΨΩ(ϑΩ , ε(u), ζ,∇ζ) = −cpϑΩ log(ϑΩ) +
1
2
ζε(u) · Bε(u) + w̄(1 − ζ)

−ζϑΩMε(u) +
1
2
kDam(∇ζ)2 + I[0,1](ζ). (4.4.1)

Here, w̄ is the damage threshold energy, kDam is the damage diffusion coeffi-
cient, both assumed to be positive constants, M = (mij) is the tensor of co-
efficients of thermal expansion, and I[0,1](ζ) enforces the condition 0 ≤ ζ ≤ 1.
We note that the elastic strain energy and the thermal expansion term are
multiplied by the damage function.

The dissipation pseudo-potential is chosen as

ΦΩ(∇ϑΩ , ε(u̇), ζ̇) =
k

2ϑ2
Ω

‖∇ϑΩ‖2 +
1

2ϑΩ
ζ ε(u̇) · Aε(u̇) +

cζ
2ϑΩ

(ζ̇)2. (4.4.2)

Here, k > 0 is the coefficient of heat conduction; A = (aijkl) is the viscosity
tensor; and cζ is the damage rate coefficient.

If one deals with an irreversible damage process, the term I(−∞,0](ζ̇) has
to be added to the right hand-side of (4.4.2) to enforce the condition ζ̇ ≤ 0.

For the sake of generality, we multiplied the elastic, the strain-rate, and
the thermal expansion terms with ζ, thus assuming that all three decrease as
the damage grows (i.e., ζ decreases). It is seen that we have a choice and can
multiply only one of them, or none. This should be dictated by the particular
system one is modelling. The changes to the model for the different choices
are easy to obtain from the model that follows.

Following the formalism, we obtain:

σr = ∂ε(u)Ψ = ζBε(u) − ζϑΩM, (4.4.3)

σir = ϑΩ∂ε(u̇)Φ = ζAε(u̇), (4.4.4)

Y r = ∂ζΨ =
1
2

ε(u) · Bε(u) − ϑΩMε(u) − w̄, (4.4.5)

Ỹ ∈ ∂I[0,1](ζ), (4.4.6)

Y ir = ϑΩ∂ζ̇Φ = cζ ζ̇, (4.4.7)

Zr = ∂∇ζΨ = kDam∇ζ, (4.4.8)

Zir = ∂∇ζ̇Φ = 0. (4.4.9)

From these we obtain the constitutive relations

σ = σr + σir = ζBε(u) + ζAε(u̇) − ζϑΩM, (4.4.10)

Y = Y r + Y ir + Y ir
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∈ 1
2

ε(u) · Bε(u) − ϑΩMε(u) − w̄ + cζ ζ̇ + ∂I[0,1](ζ), (4.4.11)

Z = Zr + Zir = kDam∇ζ. (4.4.12)

We see that in addition to the usual thermoviscoelastic constitutive rela-
tion (but with ζ), we also have one for the damage ‘force’ Y and one for the
‘damage diffusion’ Z.

The fact that ζ multiplies the right-hand side of (4.4.10) and is restricted
to the values in the interval [0, 1] allows us to call it a damage variable.

If we choose to have ζ multiply only the elastic term in Ψ and not appear
in Φ, then we would obtain, instead, the following constitutive relation,

σ = ζBε(u) + Aε(u̇) − ϑΩM.

Next, the equations of evolution are as follows. The equations of motion
are obtained from (4.1.5),

ρü − Div (ζBε(u) + ζAε(u̇) − ζϑΩM) = fB . (4.4.13)

The energy equation follows from (4.1.4),

cpϑ̇Ω − div (k∇ϑΩ) = rΩ + ζ ε(u̇) · Aε(u̇) − ζϑΩMε(u̇) + cζ(ζ̇)2. (4.4.14)

Finally, (4.1.3) yields the rate equation for the damage field,

cζ ζ̇−div (kDam∇ζ) ∈ fζ+w̄− 1
2

ε(u)·Bε(u)+ϑΩMε(u)−∂I[0,1](ζ). (4.4.15)

We note that the dependence of Ψ on the damage gradient leads to a
parabolic equation for ζ, while omitting it (kDam = 0) leads to an ordinary
differential equation.

The model consists of a coupled nonlinear system of equations with a
hyperbolic system for the displacements, a parabolic equation for the tem-
perature and a parabolic inclusion for the damage field. To complete the
model we need to supply the initial and boundary conditions, as explained
above.

The model is new, and there are, yet, no mathematical results on its
well-posedness.

If we wish to add contact to the model, we need to introduce the sur-
face Helmholtz potential and a dissipation pseudo-potential, and derive the
relevant conditions and equations in a similar manner.

4.5 Short Summary

The formalism is very elegant, and when it can be applied the models are ther-
modynamically correct or consistent. Moreover, the use of indicator functions
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in the Helmholtz potential and in the dissipation pseudo-potential makes it
easy to incorporate various constraints into the models.

However, it has certain shortcomings, some of which we mention briefly.

(i) A model for the frictional contact with wear was constructed in [97]
using the dual of the dissipation pseudo-potential. We did not pursue it here,
since the formalism above does not lead to an Archard type of wear condition
(3.2.1). We refer the reader to [97] and references therein.

(ii) In the derivation above the friction coefficient µ was assumed to be
constant. On the other hand, as has been explained in Sect. 2.7, in many
engineering applications µ is a rather complicated function of the surface
speed ‖u̇τ‖, of the temperature ϑ, possibly the wear w, and of other surface
characteristics. By using the formalism as presented, but with a nonconstant
µ in Φ, derivatives of µ would appear in the expression (4.2.7) for σirτ , which
currently are not known to be there.

We also note that the choice of the Helmholtz energy function and the
dissipation pseudo-potential has to made in each application of the theory.

This formalism has a considerable flexibility in what can be achieved using
it, and will be used to derive other contact and boundary conditions. This
direction of research seems to have the potential to lead to many interesting
models for processes taking place on the surface.



5 A Detailed Representative Problem

In the previous three chapters various constitutive laws for the behaviour of
the material and different contact conditions were described in some detail.
In this chapter we take the next step and assemble, in full detail, the relevant
equations and conditions for one particular and representative problem into
a mathematical model. then we analyze the model in detail. The sections in
Part II of this monograph will follow the same format.

This chapter is meant for those readers who are not fluent in the Theory
of Variational Inequalities, and is intended to serve as a bridge between the
models, the variational formulations of the problems, and their analysis. It
may be skipped by those acquainted and familiar with such a mathematical
approach, since the problem is described in Sect. 8.3 but following the usual
way, and without the additional details.

We describe the classical formulation of the problem with detailed ex-
planations in Sect. 5.1. Then we explain the need for a weak or variational
formulation and derive such a formulation in Sect. 5.2. Also, we describe
the relevant properties of functions in some of the function spaces that are
needed in the formulation. Finally, in Sect. 5.3, we present an existence and
uniqueness result for the solution of the variational form of the model.

The arguments we detail in this chapter may be used in the study of
all the contact problems presented in Part II. The pattern is very similar
for each problem: First, the classical formulation of the model is described,
which amounts to choosing the constitutive law and the contact conditions.
Then, a variational formulation of the problem is derived by performing, for-
mally, integration by parts and using the equations and the conditions. Next,
a statement of the existence and uniqueness results, under appropriate as-
sumptions on the problem data, is provided. Finally, for some of the problems
a sketch of the proof is described. For representative problems, the full proof
is given but in a separate section. In this chapter we provide only the first
three steps for the chosen problem.

Throughout this chapter we use dimensionless variables.

M. Shillor, M. Sofonea, J.J. Telega: Models and Analysis of Quasistatic Contact, Lect. Notes
Phys. 655, (2001), 65–81
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004
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5.1 Problem Statement

The problem we chose to detail describes a viscoelastic body, occupying the
domain Ω, which is referred to as the reference configuration, that may come
into frictional contact with a reactive stationary foundation over the part ΓC
of its surface. For the sake of simplicity, we assume in this chapter that d = 3,
so the body is three-dimensional and the contact surface is two-dimensional.
The material is assumed viscoelastic (2.3.2), and contact is modelled with the
normal compliance condition (2.6.2) and the associated friction law (2.6.6)
and (2.6.8).

As a result of applied volume forces and surface tractions the mechani-
cal state of the system evolves over the time interval [0, T ], where T > 0.
To describe this evolution we need to find at least one vector function
u = u(x, t) = (u1(x, t), u2(x, t), u3(x, t)), which describes the displacement
at time t of a particle that has in the reference configuration the position
x = (x1, x2, x3); and at least one stress tensor σ = σ(x, t) = (σij(x, t)), at
time t and position x.

It is customary to use the notation u : Ω × [0, T ] → R
3, which means

that to each pair (x, t), with x ∈ Ω and t ∈ [0, T ], the function assigns a
vector in R

3. Next, let S
3 denote the vector space of 3 × 3 symmetric tensors

or, equivalently, the vector space of 3× 3 symmetric matrices; then, we write
σ : Ω × [0, T ] → S

3, which means that to each pair (x, t), with x ∈ Ω
and t ∈ [0, T ], the function assigns a symmetric matrix in S

3, the stresses
at the point. For simplicity, in what follows we do not indicate explicitly
the dependence of various functions on x and t. We use “ · ” to denote the
scalar product on the spaces R

3 and S
3 and ‖ · ‖ will represent the associated

norm on these spaces. Also, the subscripts n and τ will represent normal and
tangential components of vectors and tensors, respectively, and a dot above
a variable denotes its derivative with respect to time.

To describe the material response, the relationship between strains and
stresses, a viscoelastic constitutive relation is assumed, given by

σ = Aveε(u̇) + Bveε(u)

in ΩT ≡ Ω × (0, T ). When the viscosity and elasticity functions are linear,
this may be written in components as

σij = aijklu̇k,l + bijkluk,l,

where i, j, k, l = 1, 2, 3, Ave = (aijkl) and Bve = (bijkl), and as is the custom,
the dependence of the coefficients on the position x, if the material is nonho-
mogeneous, is suppressed. An index that follows a comma indicates partial
derivative with respect to the corresponding spatial variable, and summa-
tion over an index repeated twice is implied. When the viscosity or elasticity
functions are nonlinear, we have

σij = (Aveε(u̇))ij + (Bveε(u))ij .
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The quasistatic equation of motion, or more appropriately, the equations
of equilibrium, when a force fB = fB(x, t) = (fB1(x, t), fB2(x, t), (fB3(x, t))
is applied, are

Div σ + fB = 0,

and, in components, we have three partial differential equations,

σij,j(x, t) + fBi(x, t) = 0,

for i = 1, 2, 3. These equations are valid in ΩT ; thus, at each time instant
t ∈ (0, T ) the system is in a state of equilibrium at each point x ∈ Ω.

Next, we need to describe what happens on the boundary. We assume
that Γ , the boundary of Ω, is partitioned into three disjoint surfaces ΓD, ΓN ,
and ΓC . The body is assumed to be held fixed on the part ΓD of the surface,
so

u = 0

on ΓD × (0, T ). On the part ΓN a prescribed surface force or traction

fN = fN ((x, t) = (fN1(x, t), fN2(x, t), (fN3(x, t))

is applied, thus, we have the condition

σn = fN

on ΓN × (0, T ), which written in components is σijnj = fNi. Here, n =
(n1, n2, n3) denotes the outer unit normal to Γ and σn represents the stress
vector, that is the product of the matrix σ = (σij) and the vector n = (ni).

The potential contact surface is ΓC where contact may take place. Within
a small displacements or small strains theory contact can take place only on
a prescribed part of the surface. This is not the case for large deformations
or displacements where the body may rotate and contact may be established
on different parts of Γ , which are unknown beforehand, and are a part of the
solution.

The contact in the normal direction is assumed to satisfy the normal
compliance condition ((2.6.2) in Sect. 2.6), so the contact pressure −σn is
related to the interpenetration of surface asperities by

−σn = pn(un − g),

on ΓC × (0, T ), where g = g(x) is the gap between the body and the founda-
tion, measured along the normal in the reference configuration. The current
gap at the point x at time t is g(x) − un(x, t), when it is nonnegative. When
it is negative, then un(x, t) − g(x) measures the asperities interpenetration.
The function pn has to vanish when its argument is negative, since then the
current gap is positive and there is no contact. The requirements that pn has
to satisfy will be spelled out below, and it will be seen that a very general
family of functions with very ‘mild’ restrictions may be used.
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In the tangential direction we use the associated law of dry friction (2.6.6)
and (2.6.8), thus

‖στ‖ ≤ pτ (un − g),

on ΓC × (0, T ), where pτ is the friction bound function which the tangential
shear cannot exceed. Its properties will be described below. When sliding
takes place the shear is opposite to the direction of the velocity, thus

στ = −pτ (uτ − g)
u̇τ

‖u̇τ‖
if u̇τ �= 0.

Finally, although the problem deals with an equilibrium equation, we
need to prescribe an initial condition because of the velocity terms in the
constitutive law and, hence, in the equation, and in the friction condition.
Thus, we let

u(x, 0) = u0(x),

in Ω, where u0 is the prescribed initial displacement field.
Collecting all the equations and the conditions yields the following for-

mulation of the mechanical problem, which we denote by Problem Pve−nc.
Typically, the notation for the various problems in the sequel involves some
indication of the type of the conditions used, and here it is ‘viscoelastic’ (ve)
material and ‘normal compliance’ (nc) contact condition.

Problem Pve−nc. Find a displacements field u : Ω× [0, T ] → R
3 and a stress

field σ : Ω × [0, T ] → S
3, such that

σ = Aveε(u̇) + Bveε(u) in ΩT , (5.1.1)
Div σ + fB = 0 in ΩT , (5.1.2)

u = 0 on ΓD × (0, T ), (5.1.3)
σn = fN on ΓN × (0, T ), (5.1.4)

−σn = pn(un − g),
‖στ‖ ≤ pτ (un − g),

στ = −pτ (un − g)
u̇τ

‖u̇τ‖
if u̇τ �= 0




on ΓC × (0, T ), (5.1.5)

u(0) = u0 in Ω. (5.1.6)

This is the classical formulation of the problem, and by this we mean that
the unknowns and the data are smooth functions such that all the deriva-
tives and all the conditions are satisfied in the usual sense at each point and
at each time instance. However, the friction condition introduces a mathe-
matical difficulty since it is ‘nondifferentiable,’ and belongs to the conditions
dealt with in the part of mechanics called ‘nonsmooth mechanics.’ Indeed,
in general, the problem will not have any ‘classical solutions,’ i.e., solutions
which have all the necessary classical derivatives, and some of the conditions
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will be satisfied in a weaker sense that has to be made precise. Moreover, the
friction condition and the differentiability of the normal compliance function
impose a ceiling on the regularity or smoothness of the solutions, even if all
the problem data are very smooth. This is in contrast with the usual smooth
problems where more regular data lead to more regular solutions.

5.2 Variational Formulation

To allow for the conditions to be satisfied in a ‘weaker sense,’ we need to
reformulate the problem in the so-called ‘variational form,’ which we proceed
to do. But first, we note that the variational formulation is not only a math-
ematical necessity, but also very useful practically since it leads directly to
the finite element approximations for the problem.

We turn to the variational formulation of problem (5.1.1) – (5.1.6).
For the purpose of the derivation, we assume that all the functions to be

used are as smooth as is needed for the various mathematical operations to
be justified, and so the derivation is formal. We shall return to this point
once we obtain the formulation. Assume that u and σ solve the problem,
and let v = (v1, v2, v3) be a test function, i.e., an arbitrary function which
is smooth and such that v = 0 on ΓD. The latter is sometimes called an
essential boundary condition, and it is imposed on the solutions and all test
functions.

Let t ∈ [0, T ] be fixed. We multiply equation (5.1.2) with v − u̇ and
integrate overΩ. We use the Gauss divergence theorem, and note that σij(vi−
u̇i),j = σ · ε(v − u̇) in Ω, and σijnj = σn on Γ , thus,

∫
Ω

σ · ε(v − u̇) dx =
∫
Γ

σn · (v − u̇) dS +
∫
Ω

fB · (v − u̇) dx. (5.2.1)

Here, dx denotes a volume element (usually written as dV = dx1dx2dx3) and
dS a surface element.

We now deal with the boundary term on the right-hand side of (5.2.1).
We split the boundary integral into integrals over ΓD, ΓN and ΓC and obtain

∫
Γ

σn · (v − u̇) dS =
∫
ΓD

σn · (v − u̇) dS +
∫
ΓN

σn · (v − u̇) dS

+
∫
ΓC

σn · (v − u̇) dS. (5.2.2)

Both u̇ and v vanish on ΓD, so
∫
ΓD

σn · (v − u̇) dS = 0. (5.2.3)

On ΓN we have (5.1.4), thus σn = fN , and so
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∫
ΓN

σn · (v − u̇) dS =
∫
ΓN

fN · (v − u̇) dS. (5.2.4)

Next, we turn to the integral over ΓC . We decompose the vectors and tensors
into their normal and tangential components as follows

σn · (v − u̇) = σn(vn − u̇n) + στ · (vτ − u̇τ ),

and, therefore,
∫
ΓC

σn · (v − u̇) dS =
∫
ΓC

σn(vn − u̇n) dS +
∫
ΓC

στ · (vτ − u̇τ ) dS. (5.2.5)

By using the first part in (5.1.5) we obtain
∫
ΓC

σn(vn − u̇n) dS = −
∫
ΓC

pn(un − g)(vn − u̇n) dS. (5.2.6)

Finally, it follows from the second part in (5.1.5) that

στ · vτ ≥ −‖στ‖ ‖vτ‖ ≥ −pτ (un − g)‖vτ‖,

−στ · u̇τ = ‖στ‖ ‖u̇τ‖ = pτ (un − g)‖u̇τ‖,

and thus,

−
∫
ΓC

στ · (vτ − u̇τ ) dS ≤
∫
ΓC

pτ (un − g)(‖vτ‖ − ‖u̇τ‖) dS. (5.2.7)

We combine (5.2.1)–(5.2.7), and after a rearrangement find that any solution
(u,σ) of the original problem has to satisfy the inequality

∫
Ω

σ · ε(v − u̇) dx+
∫
ΓC

pn(un − g)(vn − u̇n)) dS

+
∫
ΓC

pτ (un − g)(‖vτ‖ − ‖u̇τ‖) dS (5.2.8)

≥
∫
Ω

fB · (v − u̇) dx+
∫
ΓN

fN · (v − u̇) dS.

We use now (5.1.1) in (5.2.8) to obtain
∫
Ω

(Aveε(u̇) + Bveε(u)) · ε(v − u̇) dx+
∫
ΓC

pn(un − g)(vn − u̇n)) dS

+
∫
ΓC

pτ (un − g)(‖vτ‖ − ‖u̇τ‖) dS (5.2.9)

≥
∫
Ω

fB · (v − u̇) dx+
∫
ΓN

fN · (v − u̇) dS,
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which holds for every test function v and at each time instant t ∈ [0, T ].
Keeping in mind (5.1.3) and (5.1.6), we obtain the following variational

formulation of the problem, in terms of the displacements.

Problem P vve−nc. Find a displacement function u : Ω × [0, T ] → R
3 such

that (5.2.9), (5.1.3) and (5.1.6) hold.

Typically, the notation for a variational formulation of a contact problem
presented in this book involves the superscript V . Here, however, we use
the superscript v since P vve−nc is only an intermediate problem, and will be
written in a more elegant way as problem PVve−nc below.

The main difficulty at this point is this: it is not clear that a function u
which satisfies this variational formulation has any relationship whatsoever
with a solution of problem (5.1.1) – (5.1.6). To address this concern we estab-
lish the relationship and show that if u satisfies the variational formulation
and is sufficiently smooth, then is solves problem (5.1.1) – (5.1.6). The catch
is in the phrase ‘sufficiently smooth,’ which the solution, typically, will not be.
However, this justifies calling such a function u a ‘weak solution’ of problem
(5.1.1) – (5.1.6).

To that end, let t ∈ [0, T ] be fixed, assume that u satisfies the variational
formulation and is sufficiently smooth, let ϕ be a smooth function which
vanishes on Γ and let v = u̇+ϕ. It follows that v is a smooth function which
vanishes on ΓD, and so we may use it as a test function; we denote by σ the
stress field given by (5.1.1) and we use the fact that the boundary integrals
in (5.2.9) vanish, thus,

∫
Ω

σ · ε(ϕ) dx ≥
∫
Ω

fB · ϕ dx.

Similarly, if we use v = u̇ − ϕ as a test function in (5.2.9), we obtain
∫
Ω

σ · ε(ϕ) dx ≤
∫
Ω

fB · ϕ dx.

These two inequalities show that
∫
Ω

σ · ε(ϕ) dx =
∫
Ω

fB · ϕ dx, and by using
the Gauss divergence theorem we obtain

∫
Ω

(Div σ + fB) · ϕ dx = 0. (5.2.10)

Since ϕ is an arbitrary function which vanishes on Γ , it can be chosen to be
nonzero only in an arbitrary small neighborhood of each point in Ω, which
implies that the integrand vanishes in Ω. Indeed, assume that there exists
x0 ∈ Ω such that Div σ(x0, t) + fB(x0, t) �= 0. Then, because of the assumed
continuity of the functions, there exists an open neighborhood U0 of x0 in Ω
such that

Div σ(x, t) + fB(x, t) �= 0 for x ∈ U0. (5.2.11)
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Now, we may choose ϕ such that ϕ(x) = φ(x)(Div σ(x, t) + fB(x, t)) where
φ is a smooth real-valued function such that

φ(x) > 0 for x ∈ U0, φ(x) = 0 for x ∈ Ω − U0. (5.2.12)

Now, if f is a smooth function and f > 0 on U0 then, necessarily,
∫

U0
f dx > 0,

and thus it follows from (5.2.11) and (5.2.12) that
∫
Ω

(Div σ + fB) · ϕ dx =
∫

U0

φ ‖Div σ + fB‖2 dx > 0,

which contradicts (5.2.10). We conclude that

Div σ(x, t) + fB(x, t) = 0 for x ∈ Ω,

and, therefore, we recover the equilibrium equations (5.1.2).
Next, we choose an arbitrary smooth function ϕ which vanishes on ΓD ∪

ΓC and use in (5.2.9) the test functions v = u̇ ± ϕ. Then, the integral terms
on ΓC vanish and using (5.1.1) we obtain

∫
Ω

σ · ε(ϕ) dx =
∫
Ω

fB · ϕ dx+
∫
ΓN

fN · ϕ dS.

We use again the Gauss divergence theorem and (5.1.2), and after some
manipulations find that

∫
ΓN

(σn − fN ) · ϕ dS = 0. (5.2.13)

Now, for each point of ΓN , the function ϕ can be chosen to be nonzero only
in a small neighborhood of the point, and arguing as above we find that
the integrand must vanish. Thus, if σn is sufficiently smooth we recover the
boundary condition (5.1.4); and if it is not, then condition (5.2.13) provides
the precise sense in which the boundary condition is satisfied in the variational
formulation.

By choosing a smooth test function ϕ that vanishes on ΓD ∪ ΓN and its
tangential component ϕτ vanishes on ΓC , and using similar arguments as
those leading to (5.2.13), we obtain

∫
ΓC

(σn + pn(un − g))ϕn dS = 0.

Since ϕn is arbitrary, the integrand must vanish on ΓC and we recover the
first part of (5.1.5) when σn is continuous, and when it is not, it provides the
precise meaning in which it holds.

We are left with the tangential part on ΓC , which deals with the friction
condition. Let v be a smooth test function that vanishes on ΓD, and let σ
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denote the stress field given by (5.1.1). We use, again, the Gauss divergence
theorem and obtain∫

Ω

σ · ε(v − u̇) dx+
∫
Ω

Div σ · (v − u̇) dx =
∫
Γ

σn · (v − u̇) dS.

Now, using (5.1.2)– (5.1.4) and (5.2.2), yields
∫
Ω

σ ·ε(v−u̇) dx =
∫
ΓN

fN ·(v−u̇) dS+
∫
ΓC

σn·(v−u̇) dS+
∫
Ω

fB ·(v−u̇) dx.

Next, we use (5.2.5) and the first part of (5.1.5), and it follows from this
equality that
∫
Ω

σ · ε(v − u̇) dx =
∫
ΓN

fN · (v − u̇) dS −
∫
ΓC

pn(un − g)(vn − u̇n) dS

+
∫
ΓC

στ · (vτ − u̇τ ) dS +
∫
Ω

fB · (v − u̇) dx. (5.2.14)

On the other hand, substituting (5.1.1) in (5.2.9) we obtain (5.2.8) and, by
using (5.2.8) and (5.2.14), we deduce that

∫
ΓC

(στ · (vτ − u̇τ ) + pτ (un − g)(‖vτ‖ − ‖u̇τ‖)) dS ≥ 0. (5.2.15)

Since u satisfies (5.1.3), it follows that u̇ = 0 on ΓD and, therefore, v = 2u̇
may be used as a test function, and so we substitute it in (5.2.15) and obtain

∫
ΓC

(στ · u̇τ + pτ (un − g)‖u̇τ‖) dS ≥ 0.

We also use v = 0 as a test function in (5.2.15) and find
∫
ΓC

(στ · u̇τ + pτ (un − g)‖u̇τ‖) dS ≤ 0.

We conclude from the two inequalities that
∫
ΓC

(στ · u̇τ + pτ (un − g)‖u̇τ‖) dS = 0, (5.2.16)

and using (5.2.16) in (5.2.15) yields
∫
ΓC

(στ · vτ + pτ (un − g)‖vτ‖) dS ≥ 0, (5.2.17)

which holds for all possible test functions v.
We use this inequality to show that ‖στ‖ ≤ pτ . Suppose that there exists

x0 ∈ ΓC such that
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‖στ (x0, t)‖ > pτ (un(x0, t) − g(x0, t)).

Since we deal with smooth functions and pτ is nonnegative, there exists a
neighborhood U0 of x0 in ΓC such that

‖στ (x, t)‖ > pτ (un(x, t) − g(x, t)) ≥ 0 for x ∈ U0. (5.2.18)

We can choose the test function as v(x) = −φ(x)στ (x, t) on ΓC , where φ is
a smooth function such that

φ(x) > 0 for x ∈ U0; φ(x) = 0 for x ∈ ΓC − U0. (5.2.19)

Now, if f is a smooth function and f < 0 on U0 then
∫

U0
f dS < 0, therefore,

it follows from (5.2.18) and (5.2.19) that
∫
ΓC

(στ · vτ + pτ (un − g)‖vτ‖) dS =
∫

U0

(
−φ‖στ‖2 + pτ (un − g)φ‖στ‖

)
dS

=
∫

U0

φ‖στ‖(pτ (un − g) − ‖στ‖) dS < 0,

which contradicts (5.2.17). We conclude that

‖στ‖ ≤ pτ (un − g) on ΓC . (5.2.20)

Next, let α denote the angle between the vectors u̇τ and στ . Since cosα ≥
−1, we have
∫
ΓC

(στ · u̇τ + pτ (un − g)‖u̇τ‖) dS =
∫
ΓC

‖u̇τ‖(‖στ‖ cos α+ pτ (un − g)) dS

≥
∫
ΓC

‖u̇τ‖(pτ (un − g) − ‖στ‖) dS,

and by using (5.2.16) we obtain
∫
ΓC

‖u̇τ‖(‖στ‖ cos α+ pτ (un − g)) dS = 0, (5.2.21)

and also ∫
ΓC

‖u̇τ‖(pτ (un − g) − ‖στ‖) dS ≤ 0. (5.2.22)

It follows from (5.2.20) and (5.2.22) that

‖u̇τ‖(pτ (un − g) − ‖στ‖) = 0. (5.2.23)

Indeed, if f is a smooth function such that f ≥ 0 on ΓC and
∫
ΓC
f dS ≤ 0

then, necessarily, f = 0 on ΓC , and we deduce that equality holds in (5.2.23).
It follows now that
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if u̇τ �= 0 then ‖στ‖ = pτ (un − g). (5.2.24)

Using again the inequality cos α ≥ −1 and (5.2.20) we have

‖u̇τ‖(‖στ‖ cos α+ pτ (un − g)) ≥ ‖u̇τ‖ (pτ (un − g) − ‖στ‖) ≥ 0,

and by using arguments similar to those used to obtain (5.2.24), condition
(5.2.21) implies

‖u̇τ‖(‖στ‖ cosα+ pτ (un − g)) = 0. (5.2.25)

We conclude from (5.2.25) that if u̇τ �= 0 then ‖στ‖ cosα = −pτ (un−g), and
it follows form (5.2.24) that cosα = −1, unless ‖στ‖ = pτ (un − g) = 0. We
conclude that if x ∈ ΓC is a point where u̇τ (x, t) �= 0 and pτ (un(x, t)−g(x)) �=
0, then, since cosα = −1, the vectors u̇τ and στ have opposite direction, thus,

στ = −pτ (un − g)
u̇τ

‖u̇τ‖
. (5.2.26)

Let now x ∈ ΓC be a point in which u̇τ (x, t) �= 0 and pτ = 0, then (5.2.24)
implies that στ = 0, and equality (5.2.26) still holds true. We conclude that

if u̇τ �= 0 then στ = −pτ (un − g)
u̇τ

‖u̇τ‖
on ΓC . (5.2.27)

The tangential part of the condition is now a consequence of relations (5.2.20)
and (5.2.27). If στ is continuous on ΓC then the conditions hold in the usual
sense, otherwise, the precise manner in which they are satisfied is provided
by (5.2.15).

We conclude that if the variational problem P vve−nc has a sufficiently
smooth solution for all of the operations above to be justified, it is also a
solution of the original problem in the usual sense. Indeed, equality (5.1.1)
is satisfied by the construction of the stress field; the equilibrium equation
(5.1.2), the traction boundary condition (5.1.4) and the frictional contact
conditions (5.1.5) were derived from the variational inequality (5.2.9), and,
finally, the displacement boundary condition (5.1.3) and the initial boundary
condition (5.1.6) are satisfied too, since they represent an integral part of
the statement of Problem P vve−nc. However, now we have a formulation, the
so-called variational formulation, that may have solutions which do not have
the necessary regularity or smoothness, and we still call them solutions of the
problem, but now we write that such a function u is a weak solution of the
original problem.

This is the heart of the matter, and shows why it is necessary to obtain
and study variational formulations, since generally, these problems do not
have solutions that satisfy the original problems in the usual sense. This also
indicates that once the existence of a weak solution has been established,
there is considerable interest to establish its optimal regularity, since if one
can find a sufficiently well behaved weak solution, it is a classical or usual
solution, as well.
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We note in passing that even if a problem possess smooth or classical solu-
tions, the variational formulation is usually the first step in its analysis, since
many of the modern mathematical tools are better suited for such a formu-
lation. Moreover, the variational formulation can often be employed directly
in the finite element method for the problem’s numerical approximations.

In the formulation of problem P vve−nc the set, or the linear space in this
case, where the test functions lie is not indicated clearly. To correct this a
modification of the problem formulation is needed, and we proceed to rewrite
problem P vve−nc in a more precise and elegant way.

To this end we now describe some mathematical concepts which will also
allow us to reformulate the problem in a form that allows for the use of
certain abstract mathematical results. Here it is where the terms ‘almost ev-
erywhere (a.e.),’ ‘measurable set,’ ‘measurable function,’ ‘Lebesgue integral,’
‘Sobolev space,’ ‘weak derivative,’ and the rest of the terminology of measure
theory and functional analysis come in to make these concepts meaningful
and workable.

We begin with the observation that the variational formulation P vnc−ve
contains integrals over Ω and on its boundary Γ ; these integrals involve the
solution u, its time derivative u̇ as well as the spatial derivatives in the strain
tensor ε(u) and in the strain rate tensor ε(u̇). These determine, to a large
degree, the choice of the appropriate function spaces in which we shall seek
the solutions as well as the appropriate assumptions on the problem data,
in order for these integrals to makes sense, or to be ‘well-defined.’ These
function spaces are presented in Sects. 6.1 and 6.2. However, below we will
describe some of their features that are important here.

First, we employ the space L2(Ω)3; where the ‘3’ means that each function
in this space has three scalar components, and the ‘2’ means that that each
component is square-integrable on Ω. We recall that a product of two square-
integrable functions is an integrable function, but not necessarily square-
integrable.

We also use the space Q = L2(Ω)3×3
s where 3 × 3 indicates that each

function σ = (σij) in this space has nine scalar components arranged in a
matrix form, s means that the matrix is symmetric (σij = σji), and the
‘2’ means that all the components are square-integrable on Ω. The notation
L2(Γ )3 and L2(ΓN )3 has a similar meaning. We also use the Sobolev space
H1(Ω)3, where the ‘3’ shows that we deal with vector functions with three
scalar components. Each one of these components is square-integrable and has
all the partial spatial derivatives (in the sense of the theory of distributions)
of the first order, indicated by the ‘1,’ which are square-integrable, too. That
is, the components vi as well as all the spatial derivatives vi,j of a vector
function v = (v1, v2, v3) ∈ H1(Ω)3 are square-integrable functions on Ω.

Next, we use these notions in the assumptions we impose on the problem
data. In part, the assumptions are such as to make the formulation mean-
ingful, and in part to allow for the use of abstract existence and uniqueness
theorems. Then we shall return to the spaces of test functions. We note that
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a property holds a.e. in a set if it holds at all the points of the set, except
possibly on a very small subset which doesn’t really count (a set of zero
Lebesgue measure). Also, a function f is said to be Lipschitz continuous, or
Lipschitz for short, if there is a positive constant Cf such that

‖f(x) − f(y)‖ ≤ Cf‖x − y‖,

and it is said to be strongly monotone if there exists a positive constant mf

such that
(f(x) − f(y)) · (x − y) ≥ mf‖x − y‖2.

We begin with the constitutive law. We shall present the assumptions the
way it will be done in Part II, and then explain the main points.

Assume that the viscosity operator Ave and the elasticity operator Bve
satisfy the following conditions:

(a) Ave : Ω × S
3 → S

3.

(b) There exists LA > 0 such that
‖Ave(x, ε1) − Ave(x, ε2)‖ ≤ LA‖ε1 − ε2‖

∀ ε1, ε1 ∈ S
3, a.e. x ∈ Ω.

(c) There exists mA > 0 such that
(Ave(x, ε1) − Ave(x, ε2)) · (ε1 − ε2) ≥ mA ‖ε1 − ε2‖2

∀ ε1, ε1 ∈ S
3, a.e. x ∈ Ω.

(d) For any ε ∈ S
3, x �→ Ave(x, ε) is measurable on Ω.

(e) The mapping x �→ Ave(x,0) ∈ Q.




(5.2.28)

(a) Bve : Ω × S
3 → S

3.

(b) There exists an LB > 0 such that
‖Bve(x, ε1) − Bve(x, ε2)‖ ≤ LB ‖ε1 − ε2‖

∀ ε1, ε2 ∈ S
3, a.e. x ∈ Ω.

(c) For any ε ∈ S
3, x �→ Bve(x, ε) is measurable on Ω.

(d) The mapping x �→ Bve(x,0) ∈ Q.




(5.2.29)

Part (a) in each condition means that the operator is a symmetric ma-
trix of functions. Part (b) means that each one is Lipschitz with respect to
the second variable; this is a substantial assumption, it excludes terms with
power greater than one, but is satisfied within linearized viscoelasticity, and
is satisfied by truncated operators. It allows for the use of important results
from the Theory of Variational Inequalities. Part (c) in (5.2.28) means that
the viscosity operator Ave = Ave(x, ε(u̇)) is strongly monotone with respect
to the strain rate ε(u̇). This assumption is quite natural, and nonmonotone
operators are more difficult to deal with. Conditions (5.2.28) (d),(e) and
(5.2.29) (c), (d) are needed for mathematical reasons. Then, if we assume
that the test functions belong to H1(Ω)3, the first integral on the left-hand
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side of (5.2.9) makes sense. If we also require that the volume force fB has
square-integrable components, then, the first integral on the right-hand side
of (5.2.9) makes sense, too.

Next, we need to discus the boundary terms. Now, here things get a bit
complicated, since a function that is only square-integrable on Ω does not
need to have any continuity properties, and as a matter of fact, if we change
its values at a point or on a line or even on a surface, the volume integral does
not change, and we are still dealing with the same ‘function.’ Therefore, a
square-integrable function does not have meaningful values at any prescribed
point, line or surface. How do we deal with such a situation? In particular, if
a square-integrable function does not have definite values on a surface, how
do we make sense of the surface integrals in (5.2.9)?

We now give an intuitive answer to these questions, and refer the reader
to Chap. 6 for a summary and to any one of the books mentioned there for
further details.

Let V be the function space (6.2.3) in which we shall look for solutions of
the problem,

V = {v ∈ H1(Ω)3 : v = 0 on ΓD}.
It is a linear space and we use it as the space of test functions.

It turns out that although a square-integrable function does not have a
meaningful value on the boundary, a function whose spatial derivatives are
square-integrable too does have such meaningful values. The precise state-
ment is that there exists an operator γ, called a trace operator, usually written
as γ : H1(Ω)3 → L2(Γ )3, that assigns to each function v ∈ H1(Ω)3 a square-
integrable function γv on the boundary Γ . It is constructed in such a way
that if v is a smooth function, its usual values on the boundary coincide
with those of γv. Therefore, the statement v = 0 on ΓD is understood as
γv = 0 on ΓD. It is straightforward to see that any function that is smooth
(is continuous and has continuous partial derivatives) on Ω, the closure of Ω,
belongs to V if it vanishes on ΓD. For a test function v ∈ V by vn and vτ we
denote the normal and tangential components of v, respectively, in the sense
of traces, i.e., vn = (γv)n = (γv)ini, and vτ = (γv)τ .

We can now describe the assumptions on the boundary data.
Assume that the normal and tangential compliance functions pe (e = n, τ)

satisfy

(a) pe : ΓC × R → R+.

(b) There exists Le > 0 such that
|pe(x, r1) − pe(x, r2)| ≤ Le |r1 − r2|,

∀ r1, r2 ∈ R, a.e. x ∈ Ω.

(c) For each r ∈ R, x �→ pe(x, r) is measurable on ΓC .
(d) The mapping x �→ pe(x, 0) ∈ L2(ΓC).




(5.2.30)

Part (a) means that for each x ∈ ΓC and each un − g, the function
pe(x, un−g) is nonnegative. Part (b) means that both functions are Lipschitz
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with respect to the second variable, the normal displacement. Parts (c) and
(d) are mathematical ornaments and mean that the dependence on x is not
too wild.

If we wish to conform to the usual practice, we may write pτ = µpn or
pτ = µpn(1 − δpn)+, where µ is the friction coefficient (see page 22), and we
have that if pn satisfies the condition (5.2.30)(b) then pτ also satisfies it, with
Lτ = µLn, where µ = const. So, the results below are valid for the boundary
value problems associated with these choices of the normal and tangential
compliance functions.

The gap function, which in many applications is likely to be a constant,
is assumed, for the sake of generality, to satisfy

g ∈ L2(ΓC), g ≥ 0 a.e. on ΓC . (5.2.31)

So it too has to be square-integrable, and it should be nonnegative to preserve
its physical meaning. When dealing only with existence and uniqueness we
do not need it smoother, however, if we wish to have better regularity of the
solutions, we will have to impose a better smoothness on it.

Under the conditions (5.2.30) and (5.2.31) the integrals on ΓC on the
left-hand side of (5.2.9) make sense, for all u̇,u,v ∈ V .

Finally, we require that the traction fN has square-integrable components,
and then the last integral on the right-hand side of (5.2.9) makes sense, too.

We now return to the function spaces, and begin with the ‘inner product’
on V , which is the analogue of the dot product between vectors, and is defined
by

(v,w)V =
1
4

∫
Ω

(vi,j + vj,i)(wi,j + wj,i) dx,

for any v,w ∈ V , where the integral is the Lebesgue integral, since the
functions are only square-integrable. If both functions have continuous partial
derivatives, then this integral is the usual one. The fact that (·, ·)V is an inner
product on V is related to the vanishing of the functions on ΓD, and we skip
the explanation, we just mention that it has all the properties one would
expect from a dot product. In components,

ε(v) · ε(w) = εij(v)εij(w) =
1
4

(vi,j + vj,i)(wi,j + wj,i),

and thus, (v,w)V =
∫
Ω

ε(v) · ε(w) dx, which shows that

(v,w)V = (ε(v), ε(w))Q,

where (·, ·)Q denotes the inner product on the space Q, and is given by
(σ, τ )Q =

∫
Ω

σ · τ dx. With the inner product (·, ·)V we associate, on V , the
norm

‖v‖V = (v,v)1/2V .

The space V has the property that if {vk} is a sequence in V such that
‖vk − vm‖V → 0 as k, m → ∞, then there exist an element v ∈ V such
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that ‖vk − v‖V → 0 as k → ∞. In this case we say that the sequence {vk}
converges in norm to v. A vector space with an inner product which satisfies
this property is called a Hilbert space, and so V is a Hilbert space. This, in
turn, allows us to use a host of results for Hilbert spaces.

We now proceed to rewrite the variational problem in an abstract way.
This will allow the use of sophisticated results for variational inequalities. We
begin by letting F denote the element of V which has the following property

(F(t),v)V =
∫
Ω

fB(t) · v dx+
∫
ΓN

fN (t) · v dS,

for all v ∈ V and t ∈ [0, T ]. Thus, F(t) represents the combined action of the
volume forces and surface tractions, in one function. The existence of F(t) is
guaranteed by the Riesz Representation Theorem (see for instance [186, p. 64],
since V is a Hilbert space. But there is no formula or a simple way to find
F(t), we only know that it exists and that is sufficient for our purposes. Next,
we introduce the contact functional j : V × V → R,

j(v,w) =
∫
ΓC

pn(vn − g)wn dS +
∫
ΓC

pτ (vn − g) ‖wτ‖ dS,

for all v,w ∈ V . It represents the combined normal and tangential compli-
ances, and is related to the work, if w is a displacement, or the power, if w
is a velocity, of the contact forces.

We use now the Hilbert space structure of V , discussed above, and the
notation just introduced, and write problem P vve−nc (page 71) in the following
way.

Problem PVve−nc. Find a displacement function u : [0, T ] → V such that

(Aveε(u̇(t)), ε(v) − ε(u̇(t)))Q + (Bveε(u(t)), ε(v) − ε(u̇(t)))Q

+j(u(t),v) − j(u(t), u̇(t)) ≥ (F(t),v − u̇(t))V

for all v ∈ V, t ∈ [0, T ], (5.2.32)

u(0) = u0. (5.2.33)

Problem PVve−nc represents the variational formulation of the mechanical
problem Pve−nc. It follows from the discussion above that if (u,σ) is a smooth
solution of the contact problem Pve−nc then u is a solution of the variational
problem PVve−nc and, conversely, if u is a smooth solution of the variational
problem PVve−nc and σ is defined by (5.1.1), then (u,σ) is a solution to the
contact problem Pve−nc. However, generally, any solution of Problem PVve−nc
does not satisfy all the conditions of the problem in the usual sense.

Finally, we remark that the variational formulation PVve−nc can be directly
discretized by using the finite element method, and, thus, it provides the basis
for various numerical schemes for its numerical approximations.
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5.3 An Existence and Uniqueness Result

We now present an existence and uniqueness result for problem PVve−nc. To
this end we have to specify precisely the regularity in time of the forces fB
and tractions fN . But first, a short explanation. We denote by C([0, T ];X)
the linear space of continuous functions from [0, T ] to X. Below, we also need
C1([0, T ];X), which is the linear space of continuously differentiable functions
from [0, T ] to X. A function f : [0, T ] → X belongs to the space C1([0, T ];X)
if f ∈ C([0, T ];X), f is differentiable at each time instant t ∈ [0, T ] and its
time derivative, denoted by ḟ , belongs to C([0, T ];X), as well.

Now, we assume that the force and traction densities satisfy

fB ∈ C([0, T ];L2(Ω)3), fN ∈ C([0, T ];L2(ΓN )3). (5.3.1)

Finally, we assume that the initial displacements fulfill

u0 ∈ V. (5.3.2)

The statement of the existence and uniqueness of the solution for Problem
PVve−nc is as follows.

Theorem 5.3.1. Assume that (5.2.28)–(5.2.31), (5.3.1) and (5.3.2) hold.
Then Problem PVve−nc has a unique solution u ∈ C1([0, T ];V ).

A proof of the theorem that is based on results for elliptic variational
inequalities and fixed point arguments can be found in [20]. In Sect. 8.4
we provide a different proof, based on an abstract result for evolutionary
variational inequalities.

For each time instant t ∈ [0, T ], the solution u(t) is a function that belongs
to the space V , where we were seeking it in the first place, it is continuous in
time, it has a derivative in time u̇(t), and this derivative belongs to V , too.
However, being in V is insufficient for all the the conditions of the classical
formulation to be satisfied in the usual sense. We say that a pair of functions
(u,σ), which satisfies (5.1.1), (5.2.32) and (5.2.33), is a weak solution of
problem Pve−nc. We conclude that the mechanical problem Pve−nc has a
unique weak solution. The regularity or the smoothness of the solution is an
open question at this time.

We end this chapter with the remark that in Part II, for each one of the
problems we follow a similar pattern as in this chapter. First, the classical
formulation of the problem is presented, then the variational formulation, the
assumptions on the problem data are described carefully, and the existence
and uniqueness result stated. For some of the problems we also provide a
sketch of the proof, indicating its main steps. In each chapter we also provide
a detailed proof of one of the theorems, showing the methods of proof. Each of
these proofs is different and deals with somewhat different aspects or settings
of the problem, and needs different considerations.
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Part II provides mathematical formulations of the models, the assumptions
that underlie them, their weak or variational formulations and the statements
of the results. Each chapter also describes representative proofs which show
the mathematical methods used, and indicate the types of problems that can
be analyzed using them. These may be skipped on first reading.

Preliminary mathematical material and notations used in Part II are given
in the first chapter. It is assumed that the reader has some basic knowledge in
functional analysis. This is mainly needed for understanding the variational
formulation of the problems, and the statements on the intrinsic regularity
or smoothness of the solutions. Indeed, the regularity of a function is de-
scribed by its membership in a function space. Better spaces mean improved
regularity and smoother functions.

A partial list of books and monographs, where mathematical notations,
definitions and methods have been applied to quasistatic contact problems
includes [5, 47, 48, 50, 51, 66, 69, 71, 85, 187–193]. Although long, the list is by
no means exhaustive. As can be seen from the list the subject has received
considerable attention recently.

In Sect. 6.1 we introduce the notation used throughout this part of the
book. The various function spaces and their subspaces or subsets, where the
solutions of the problems are to be found, are described in Sect. 6.2. The Pro-
jection Theorem, the notion of the subdifferential, fixed-point theorems and
solvability results for variational inequalities are recalled in Sect. 6.3. Finally,
a description of the operators used to model the constitutive relations can be
found in Sect. 6.4, where the assumptions imposed on them are detailed.

6.1 Notation

Throughout the book R stands for the set of real numbers or the real line, R+
for the set of non-negative numbers and R

d for the d-dimensional Euclidean
space. In the applications we have in mind d = 2, 3, but many of the results
hold true or are easy to generalize to any dimension d ≥ 1.

We use r+ = max {0, r} and r− = max {0,−r} to denote the positive
and negative parts of r ∈ R, respectively, thus, r = r+ − r−. Other symbols
frequently used are:

M. Shillor, M. Sofonea, J.J. Telega: Models and Analysis of Quasistatic Contact, Lect. Notes
Phys. 655, (2001), 85–99
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004
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N – the set of positive integers;
c – a generic positive constant the value of which may change from place to

place;
n! = 1 · 2 · . . . · n;
∀ – for each;
⇒ – implies;
A – closure of the set A;
δij – the Kronecker delta, the unit matrix Id;
a.e. – almost everywhere with respect to the Lebesgue measure;
iff – if and only if.

We always assume that Ω ⊂ R
d is open, connected and bounded with

a Lipschitz boundary Γ . Since the boundary is Lipschitz, the outward unit
normal n exists a.e. on Γ . If [0, T ] represents the time interval of interest,
where T > 0, we use the notation ΩT = Ω × (0, T ).

We denote by S
d the space of second order symmetric tensors on R

d or,
equivalently, the space of symmetric matrices of order d. The canonical inner
products and the corresponding norms on R

d and S
d are

u · v = uivi, ‖v‖ = (v · v)1/2 ∀u,v ∈ R
d,

σ · τ = σijτij , ‖τ‖ = (τ · τ )1/2 ∀σ, τ ∈ S
d.

Here and throughout this book, the indices i, j, k, l have values from 1 to d, the
summation convention over repeated indices is used, and the index following
a comma indicates a partial derivative with respect to the corresponding
spatial variable.

We use standard notation for spaces of real-valued functions associated
with Ω and Γ :

Lp(Ω) – the Lebesgue space of p-integrable functions on Ω, with the usual
modification if p = ∞;

Lp(Γ0) – the Lebesgue space of p-integrable functions on Γ0, where Γ0 is a
measurable part of Γ , with the usual modification if p = ∞;

Cm(Ω) – the space of functions whose derivatives up to and including order
m are continuous up to the boundary Γ ;

C∞
0 (Ω) – the space of infinitely differentiable functions with compact sup-
port in Ω;

Cm,β(Ω) – the Hölder space of nonnegative integer m and index β ∈ (0, 1);
W k,p(Ω) – the Sobolev space of functions whose weak derivatives of orders
k or less are p-integrable on Ω;

W s,p(Ω) – the Sobolev space of non-integer order;
Hs(Ω) ≡ W s,2(Ω), for positive real s;
W k,p

0 (Ω) – the closure of C∞
0 (Ω) in W k,p(Ω);

Hk
0 (Ω) ≡ W k,2

0 (Ω);
H−1(Ω) – the dual of H1

0 (Ω);
H

1
2 (Γ ) – the Sobolev space on Γ , defined as the range of the trace operator
on H1(Ω);

H− 1
2 (Γ ) – the dual of H

1
2 (Γ ).
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All the linear spaces considered in this book, including abstract Banach
spaces, Hilbert spaces and various function spaces, are assumed to be real
spaces.

Let X and Y be two Hilbert spaces endowed with the inner products
(·, ·)X and (·, ·)Y , and the associated norms ‖ ·‖X and ‖ ·‖Y , respectively. We
denote by Xd the space

Xd =
{

x = (x1, . . . , xd) : xi ∈ X, 1 ≤ i ≤ d
}
,

with the canonical inner product

(x,y)Xd = (xi, yi)X

and the associated norm ‖ · ‖Xd . We also denote by X×Y the product space

X × Y =
{

z = (x, y) : x ∈ X, y ∈ Y
}
,

with the canonical inner product

(z1, z2)X×Y = (x1, x2)X + (y1, y2)Y , zk = (xk, yk),∈ X × Y,

for k = 1, 2, and the associated norm by ‖ · ‖X×Y .
Let (X, ‖ · ‖X) be a real Banach space. We denote by C([0, T ];X) and

C1([0, T ];X), for T > 0, the spaces of continuous and continuously differen-
tiable functions from [0, T ] to X, with norms

‖u‖C([0,T ];X) = max
t∈[0,T ]

‖u(t)‖X ,

and
‖u‖C1([0,T ];X) = max

t∈[0,T ]
‖u(t)‖X + max

t∈[0,T ]
‖u̇(t)‖X ,

respectively. Here and below, a dot above a variable denotes its time deriva-
tive.

For p ∈ [1,∞), we define Lp(0, T ;X) to be the space of all measurable
functions v : [0, T ] → X such that

∫ T
0 ‖v(t)‖pXdt < ∞. With the norm

‖v‖Lp(0,T ;X) =
(∫ T

0
‖v(t)‖pXdt

)1/p
,

the space Lp(0, T ;X) is a Banach space. We define L∞(0, T ;X) to be the
space of all measurable functions v : [0, T ] → X such that t �→ ‖v(t)‖X is
essentially bounded on [0, T ]. The space L∞(0, T ;X) is a Banach space with
the norm

‖v‖L∞(0,T ;X) = ess supt∈[0,T ] ‖v(t)‖X .

For p ∈ [1,∞] we also use the Sobolev space
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W 1,p(0, T ;X) = { v ∈ Lp(0, T ;X) : ‖v̇‖Lp(0,T ;X) < ∞ }.

When p < ∞, W 1,p(0, T ;X) is a Banach space with the norm

‖u‖W 1,p(0,T ;X) =

(∫ T

0
(‖u(t)‖pX + ‖u̇(t)‖pX) dt

)1/p

,

and, when p = ∞, W 1,p(0, T ;X) is a Banach space with the norm

‖u‖W 1,∞(0,T ;X) = max{‖u(t)‖L∞(0,T ;X), ‖u̇(t)‖L∞(0,T ;X)}.

When (X, (·, ·)X) is a Hilbert space, the spaces L2(0, T ;X) and W 1,2

(0, T ;X) are also Hilbert spaces, with inner products

(u, v)L2(0,T ;X) =
∫ T

0
(u(t), v(t))X dt,

and

(u, v)W 1,2(0,T ;X) =
∫ T

0
(u(t), v(t))X dt+

∫ T

0
(u̇(t), v̇(t))X dt,

respectively.

6.2 Function Spaces

In the study of contact problems we use spaces of functions with values in R
d

or S
d. These are the spaces in which the displacements or the stress tensor

are sought, and they provide the intrinsic regularity of the solutions.
In the following chapters the spaces that are used frequently are:

L2(Ω)d =
{

v = (v1, . . . , vd) : vi ∈ L2(Ω), 1 ≤ i ≤ d
}
, (6.2.1)

Q =
{

τ = (τij) : τij = τji ∈ L2(Ω), 1 ≤ i, j ≤ d
}
. (6.2.2)

These are Hilbert spaces with the respective canonical inner products

(u,v)L2(Ω)d =
∫
Ω

ui(x) vi(x) dx, (σ, τ )Q =
∫
Ω

σij(x) τij(x) dx.

The associated norms on these spaces are ‖ · ‖L2(Ω)d and ‖ · ‖Q, respectively.
For the displacement field we use the space

H1(Ω)d =
{

u = (u1, . . . , ud) : ui ∈ H1(Ω), 1 ≤ i ≤ d
}
,

or its subspace which describes a homogeneous boundary condition on a part
of the boundary. The space H1(Ω)d is a Hilbert space with the canonical
inner product
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(u,v)H1(Ω)d = (u,v)L2(Ω)d + (ε(u), ε(v))Q,

and the corresponding norm is

‖v‖H1(Ω)d = (v,v)1/2
H1(Ω)d .

Here, ε : H1(Ω)d → Q is the linearized deformation operator defined by

ε(u) = (εij(u)), εij(u) =
1
2

(ui,j + uj,i).

This is the so-called small strain tensor. Here and below the index following
a comma indicates a weak partial derivative, that is a derivative in the sense
of distributions on Ω. We denote by γv ∈ L2(Γ )d the trace of a function v
in H1(Ω)d on the boundary Γ . When no ambiguity may occur, we write v
instead of γv. We note that for v ∈ H1(Ω)d the trace γv is a well defined
function, but for v ∈ L2(Ω)d it does not make any sense.

Now, let ΓD be a measurable subset of Γ with meas (ΓD) > 0. In the
study of contact problems, we frequently use the subspace of H1(Ω)d given
by

V =
{

v ∈ H1(Ω)d : v = 0 on ΓD
}
. (6.2.3)

Here, the equality v = 0 on ΓD is understood in the trace sense, i. e., γv = 0
on ΓD. Since the trace operator is continuous, V is a closed subspace of
H1(Ω)d. Moreover, since meas (ΓD) > 0, Korn’s inequality (see, e.g., [192, p.
79]) holds and

‖ε(v)‖Q ≥ cK ‖v‖H1(Ω)d ∀v ∈ V, (6.2.4)

where cK denotes a positive constant depending only on Ω and ΓD. Every-
where in the book, unless stated otherwise, we use the inner product (· , ·)V
on V defined by

(u,v)V = (ε(u), ε(v))Q, (6.2.5)

which induces the norm
‖v‖V = ‖ε(v)‖Q. (6.2.6)

It follows from (6.2.4) and (6.2.6) that ‖ · ‖H1(Ω)d and ‖ · ‖V are equivalent
norms on V , and so (V, ‖ · ‖V ) is a real Hilbert space.

For an element v ∈ H1(Ω)d we may consider its normal and tangential
components on the boundary Γ , denoted by vn and vτ and given, respectively,
by

vn = v · n, vτ = v − vnn.

We use this notation for vectors with subscripts too, thus, vηn and vητ rep-
resent the normal and tangential components, on the boundary, of the vector
vη ∈ H1(Ω)d.

In analysis of contact problems, the boundary Γ is decomposed into three
parts ΓD, ΓN and ΓC , with ΓD, ΓN and ΓC being relatively open and mu-
tually disjoint. To avoid noncoerciveness in quasistatic problems, we assume
that meas (ΓD) > 0. In addition to the space V , we use the subspace
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V1 = { v ∈ V : vn = 0 on ΓC } (6.2.7)

and the subset
V2 = { v ∈ V : vn ≤ 0 on ΓC }. (6.2.8)

Over V1 and V2 we use the inner product (·, ·)V of V . Then V1 is itself a
Hilbert space, while V2 is a non-empty, closed and convex set in V . By the
Sobolev trace theorem, there is a constant cB > 0, depending only on Ω, ΓD,
and ΓC , such that,

‖v‖L2(ΓC)d ≤ cB ‖v‖V ∀v ∈ V. (6.2.9)

We seek the stress fields in the space

Q1 =
{

τ ∈ Q : Div τ ∈ L2(Ω)d
}
, (6.2.10)

which is a Hilbert space when endowed with the inner product

(σ, τ )Q1 = (σ, τ )Q + (Div σ,Div τ )L2(Ω)d ,

and the associated norm ‖ · ‖Q1 . We recall that Div : Q1 → L2(Ω)d is the
divergence operator,

Div σ = (σij,j).

If σ = (σij) is a symmetric (σij = σji) and sufficiently regular tensor function,
e.g., σ ∈ C1(Ω)d

2
, then the following Green’s formula holds,

(σ, ε(v))Q + (Div σ,v)L2(Ω)d =
∫
Γ

σn · v dS ∀v ∈ H1(Ω)d. (6.2.11)

Here, dS denotes the surface measure on Γ . The normal and tangential com-
ponents of σ on the boundary, denoted by σn and στ , respectively, are given
by

σn = (σn) · n, στ = σn − σnn.

More generally, if σ is an arbitrary element ofQ1, we still denote by σn and
στ the normal and tangential traces of σ on the boundary, see, e.g., [51, Ch.
7] for details.

6.3 Auxiliary Material

In this section we provide various results which will be applied repeatedly in
the proofs presented below. These are standard results in convex analysis, and
the theories of evolution equations and variational inequalities, the Banach
and Schauder fixed-point theorems, and Gronwall–type inequalities. Addi-
tional general results needed in our study of the problems will be presented
in the following chapters.

We start with the definition of the projection operator in a Hilbert space.
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Theorem 6.3.1. (Projection theorem) Let K be a nonempty, closed and
convex subset in a Hilbert space X. Then, for each f ∈ X there is a unique
element u = PKf ∈ K such that

‖f − u‖X = min
v∈K

‖f − v‖X .

The operator PK : X → K is called the projection operator onto K. The
element u = PKf is called the projection of f on K and is characterized by
the inequality

u ∈ K, (u− f, v − u)X ≥ 0 ∀ v ∈ K. (6.3.1)

Using inequality (6.3.1) it is easy to verify that the projection operator is
nonexpansive, that is

‖PKu− PKv‖X ≤ ‖u− v‖X ∀u, v ∈ X. (6.3.2)

We present now some results on convex functions defined on inner product
spaces. Let (X, (·, ·)X) be such a space and let ϕ be a function

ϕ : X → (−∞,∞].

Below, we adopt the convention that ∞ + ∞ = ∞ while an expression of the
form ∞ − ∞ is undefined. The effective domain of ϕ is the set

D(ϕ) = { u ∈ X : ϕ(u) < ∞ },

and we say that the function ϕ is proper if D(ϕ) �= ∅, that is there exists
u ∈ X such that ϕ(u) < ∞. The function ϕ is convex if

ϕ((1 − r)u+ r v) ≤ (1 − r)ϕ(u) + r ϕ(v)

for all u, v ∈ X and r ∈ (0, 1). The function is is said to be lower semicon-
tinuous (l.s.c.) at u ∈ X if

lim inf
n→∞ ϕ(un) ≥ ϕ(u) (6.3.3)

for each sequence {un} ⊂ X converging to u in X. A function ϕ is l.s.c.
on a subset Y of X if it is l.s.c. at every point of u ∈ Y . We say that ϕ
is l.s.c. if it is l.s.c. on X. When inequality (6.3.3) holds for each sequence
{un} ⊂ X that converges weakly to u, the function ϕ is said to be weakly lower
semicontinuous at u. The notions of a weakly l.s.c. function on a subset or
weakly l.s.c. function on X are defined similarly. If ϕ is a continuous function
then it is also l.s.c. The converse is not true and a lower semicontinuous
function can be discontinuous. Since strong convergence in X implies weak
convergence, it follows that a lower semicontinuous function is weakly lower
semicontinuous. Moreover, it can be shown that a proper convex function
ϕ : X → (−∞,∞] is lower semicontinuous if and only if it is weakly lower
semicontinuous.
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The notion of the subdifferential is useful in describing constraints in
many branches of engineering and in mechanics, including those arising in
contact problems. Indeed, one can find examples in Sects. 3.3, 3.4 and in
Chap. 4. We use the notation

∂ϕ(u) = { f ∈ X : ϕ(v) − ϕ(u) ≥ (f, v − u)X ∀ v ∈ X },

D(∂ϕ) = { u ∈ X : ∂ϕ(u) �= ∅ }

for the subdifferential of ϕ and for its domain of definition, respectively.
A function ϕ is said to be subdifferentiable at u ∈ X if u ∈ D(∂ϕ), and

each element f ∈ ∂ϕ(u) is called a subgradient of ϕ at u. A function ϕ is said
to be subdifferentiable on a subset Y if it is subdifferentiable at each point
u ∈ Y , and it is said to be subdifferentiable, if it is subdifferentiable at each
point u ∈ X, i.e., if D(∂ϕ) = X.

We used in the models of adhesion, damage, and in the thermodynamic
derivation, in Sects. 3.3, 3.4 and Chap. 4, respectively, the indicator functions
of various sets, whose definition is as follows. Let K ⊂ X, then, the indicator
function of the set K is the function IK : X → (−∞,∞] such that

IK(v) =
{

0 if v ∈ K
∞ if v �∈ K

. (6.3.4)

It can be shown that the set K is a non-empty closed convex set of X if and
only if its indicator function IK is proper, convex and lower semicontinuous.
Consider now the subdifferential of the indicator function IK(v), denoted
∂IK . When u ∈ K, then IK(u) = 0 and f ∈ ∂IK(u) if and only if

IK(v) ≥ (f, v − u)X ∀ v ∈ X,

i.e.,
(f, v − u)X ≤ 0 ∀ v ∈ K.

Thus, for u ∈ K we have the characterization

∂IK(u) = { f ∈ X : (f, v − u)X ≤ 0 ∀ v ∈ K }, (6.3.5)

and for u /∈ K, we just have ∂IK(u) = ∅.
Each subgradient f ∈ ∂IK(u) is called a support functional to K at u. We

always have 0X ∈ ∂IK(u) for u ∈ K, where 0X denotes the zero element of X.
It is easily seen that if u ∈ int (K) (the interior of K) then ∂IK(u) = {0X}.

The subdifferentials of the indicator functions I[0,1], I(−∞,0] and of the
functions | · | and ‖ · ‖ are given in (4.2.9) – (4.2.12), respectively, and the
graphs of the first three are depicted in Figs. 6, 7, and 8.

We turn now to results on elliptic variational inequalities involving a non-
linear operator on a real Hilbert space X. Assume that A : X → X is a
Lipschitz continuous and strongly monotone operator on X, i.e.,
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(a) there exists M > 0 such that
‖Au−Av‖X ≤ M‖u− v‖X ∀u, v ∈ X,

(b) there exists m > 0 such that
(Au−Av, u− v)X ≥ m ‖u− v‖2

X ∀u, v ∈ X.




(6.3.6)

The operator A is said to be monotone if it satisfies (6.3.6) (b) with m = 0.
Then we have the following result.

Theorem 6.3.2. Let X be a Hilbert space. Assume (6.3.6) and that ϕ : X →
(−∞,∞] is a proper, convex and lower semicontinuous function. Then, for
each f ∈ X, the elliptic variational inequality of the second kind,

u ∈ X, (Au, v − u)X + ϕ(v) − ϕ(u) ≥ (f, v − u)X ∀ v ∈ X,

has a unique solution. Moreover, the solution depends Lipschitz continuously
on f .

A proof of Theorem 6.3.2 can be found in [51, p. 60]. We choose now ϕ to
be the indicator function of a non-empty, closed, and convex set K ⊂ X and
obtain the following result, which will be used in Sect. 9.1.

Corollary 6.3.3. Let X be a Hilbert space and K ⊂ X be a nonempty, convex
and closed subset. Assume that A satisfies (6.3.6). Then, for every f ∈ X
there exists a unique solution of the elliptic variational inequality of the first
kind

u ∈ K, (Au, v − u)X ≥ (f, v − u)X ∀ v ∈ K.

Moreover, the solution depends Lipschitz continuously on f .

Now, choosing ϕ ≡ 0 in Theorem 6.3.2 we obtain the following result,
used in Sect. 11.5.

Corollary 6.3.4. Let X be a Hilbert space and assume that (6.3.6) holds.
Then, for each f ∈ X there exists a unique element u ∈ X such that Au = f .
Moreover, the mapping u �→ f is Lipschitz continuous from X to X.

We employ the following general result in Sect. 9.5 in the proof of Theorem
9.5.2.

Theorem 6.3.5. Let X be a Hilbert space and let ϕ : X → (−∞,∞] be a
proper, convex, and lower semicontinuous function. Then, for each u0 ∈ D(ϕ)
and f ∈ L2(0, T ;X) there exists a unique solution u ∈ W 1,2(0, T ;X) which
satisfies,

u(t) ∈ D(∂ϕ) a.e. t ∈ (0, T ), (6.3.7)

u̇(t) + ∂ϕ(u(t)) 
 f(t) a.e. t ∈ (0, T ), (6.3.8)

u(0) = u0. (6.3.9)
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Theorem 6.3.5 is a simplified version of a more general result that can be
found in [187, p. 72] or [189, p. 189].

The following classical theorem of Cauchy-Lipschitz in the space W 1,∞

(see, e.g., [194, p. 60]) is used in the proof of Theorem 11.5.

Theorem 6.3.6. Assume that (X, ‖ · ‖X) is a real Banach space and F (t, ·) :
X → X is an operator defined a.e. on (0, T ), and satisfies:
(i) There exists LF > 0 such that

‖F (t, x) − F (t, y)‖X ≤ LF ‖x− y‖X
for all x, y ∈ X, a.e. t ∈ (0, T ).
(ii) There exists p ∈ [1,∞] such that t �→ F (t, x) ∈ Lp(0, T ;X) for all x ∈ X.

Then, for each x0 ∈ X there exists a unique function x ∈ W 1,p(0, T ;X)
such that

ẋ(t) = F (t, x(t)) a.e. t ∈ (0, T ),

x(0) = x0.

In the study of quasistatic contact problems with damage, in Chap. 12,
we use the following general result on parabolic variational inequalities. Let
V and H be real Hilbert spaces such that V is dense in H and the injection
map is continuous; the space H is identified with its own dual and with a
subspace of the dual V ′ of V . We write

V ⊂ H ⊂ V ′,

and we say that the inclusions above define a Gelfand triplet. We denote by
‖ · ‖V , ‖ · ‖H , and ‖ · ‖V ′ the norms on the spaces V , H, and V ′, respectively.
We use 〈·, ·〉V ′×V for the duality pairing between V ′ and V , and note that if
f ∈ H then it coincides with the inner product on H,

〈f, v〉V ′×V = (f, v)H ∀v ∈ V.

The proof of the following result can be found in [70, p. 124].

Theorem 6.3.7. Let V ⊂ H ⊂ V ′ be a Gelfand triplet and let K be a
nonempty, closed and convex set of V . Assume that a(·, ·) : V × V → R

is a continuous and symmetric bilinear form and there are two real constants
ca > 0 and c0 such that

a(v, v) + c0‖v‖2
H ≥ ca ‖v‖2

V ∀ v ∈ V.

Then, for each u0 ∈ K and each f ∈ L2(0, T ;H), there exists a unique
function u ∈ W 1,2(0, T ;H) ∩ L2(0, T ;V ) such that

u(t) ∈ K ∀t ∈ [0, T ],
〈u̇(t), v − u(t)〉V ′×V + a(u(t), v − u(t)) ≥ (f(t), v − u(t))H

∀ v ∈ K, a.e. t ∈ (0, T ),
u(0) = u0.
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The Banach fixed-point theorem that follows, will be used repeatedly in
proving the existence of solutions for variational problems.

Theorem 6.3.8. Let K be a nonempty closed set in a Banach space (X, ‖ ·
‖X). Assume that Λ : K → K is a contraction mapping, i.e., there exists
cΛ ∈ [0, 1), such that

‖Λu− Λv‖X ≤ cΛ ‖u− v‖X ∀u, v ∈ K.

Then, there exists a unique u ∈ K such that Λu = u.

We note that an element u such that Λu = u is called a fixed point of the
operator Λ.

Later in this book we will need a variant of the Banach Theorem which
we recall now. But first, given an operator Λ, we define its powers inductively
by Λn = Λ(Λn−1) for n ≥ 2.

Theorem 6.3.9. Assume that K is a nonempty closed set in a Banach space
X, and that Λ : K → K. Suppose Λn is a contraction mapping for some
positive integer n. Then Λ has a unique fixed point in K.

The proofs of Theorems 6.3.8 and 6.3.9 can be found in [51, Ch.1].

We now present the Schauder fixed point theorem which will be used in the
Proof of Theorem 9.3.1 in Chap. 9. To this end we need some preliminaries.
Consider two Banach spaces X and Y and let K ⊂ X. An operator T :
K → Y is said to be compact if for every bounded set B ⊂ K the image set
T (B) has compact closure in Y . This is equivalent to saying that for every
bounded sequence {xn} ⊂ K, the sequence {T (xn)} ⊂ Y has a subsequence
that converges to a point in Y . If T is both compact and continuous we say
that it is a completely continuous operator. When T is a linear operator then
if T is compact it implies that T is bounded and hence continuous; this is
not true in general when T is nonlinear, therefore, the continuity of T must
be assumed separately.

We can now state the following well-known Schauder fixed-point theorem.

Theorem 6.3.10. Let X be a Banach space and let K be a nonempty,
bounded, closed and convex subset of X. Let T : K → K be a completely
continuous operator. Then T has at least one fixed point in the set K.

A proof of Theorem 6.3.10 can be found in [195, p. 90] or [196, p. 482].

We end this section with two Gronwall-type inequalities which will be
used often in what follows in obtaining estimates on various functions.

Lemma 6.3.11. Assume that f, g : [a, b] → R are continuous functions which
satisfy

f(t) ≤ g(t) + c

∫ t

a

f(s) ds ∀t ∈ [a, b],
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where c > 0 is a constant. Then,

f(t) ≤ g(t) + c

∫ t

a

g(s) ec (t−s) ds ∀t ∈ [a, b].

Moreover, if g is nondecreasing, then

f(t) ≤ g(t) ec (t−a) ∀t ∈ [a, b].

A proof of Lemma 6.3.11 can be found in [51, p. 162].

6.4 Constitutive Operators

We present the assumptions on the operators involved in elastic, viscoelastic,
and viscoplastic constitutive relations used in this book.

Linearly elastic materials have a constitutive relation of the form

σ = Belε(u), (6.4.1)

in which Bel = (bijkl) is a fourth-order tensor. We allow it to depend on the
location, i.e., Bel = Bel(x) = (bijkl(x)), which means that the material is
nonhomogeneous and, possibly, anisotropic.

In the study of mechanical problems involving elastic materials we as-
sume that the elasticity tensor satisfies the usual properties of ellipticity and
symmetry, i.e.

(a) Bel : Ω × S
d → S

d.

(b) bijkl ∈ L∞(Ω).

(c) Bel(x)σ · τ = σ · Bel(x)τ ∀σ, τ ∈ S
d, a.e. x ∈ Ω.

(d) There exists mel > 0 such that
Bel(x)τ · τ ≥ mel ‖τ‖2 ∀ τ ∈ S

d, a.e. x ∈ Ω.




(6.4.2)

Generally, due to the symmetries of the elasticity tensor Bel, in the three-
dimensional case (d = 3), there may be up to 21 independent coefficients
among the bijkl. An isotropic material is characterized by only two indepen-
dent coefficients, usually chosen as the Young modulus and Poisson’s ratio,
or the two Lamé coefficients. For the sake of generality, we allow for fully
anisotropic and nonhomogeneous materials.

We consider viscoelastic materials with constitutive relation of the form

σ = Aveε(u̇) + Bveε(u). (6.4.3)

We allow the nonlinear operators of viscosity Ave and elasticity Bve to depend
on the location. Thus, Aveε(u̇) and Bveε(u) are short-hand notations for
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Ave(x, ε(u̇)) and Bve(x, ε(u)), respectively. When Ave and Bve are linear
one recovers the Kelvin-Voigt constitutive law (see (2.3.3) on page 13).

In the study of mechanical problems involving viscoelastic materials, we
assume the following.

(a) Ave : Ω × S
d → S

d.

(b) There exists LA > 0 such that
‖Ave(x, ε1) − Ave(x, ε2)‖ ≤ LA‖ε1 − ε2‖
∀ ε1, ε1 ∈ S

d, a.e. x ∈ Ω.

(c) There exists mA > 0 such that
(Ave(x, ε1) − Ave(x, ε2)) · (ε1 − ε2) ≥ mA ‖ε1 − ε2‖2

∀ ε1ε1 ∈ S
d, a.e. x ∈ Ω.

(d) For any ε ∈ S
d, x �→ Ave(x, ε) is measurable on Ω.

(e) The mapping x �→ Ave(x,0) ∈ Q.




(6.4.4)

(a) Bve : Ω × S
d → S

d.

(b) There exists an LB > 0 such that
‖Bve(x, ε1) − Bve(x, ε2)‖ ≤ LB ‖ε1 − ε2‖
∀ ε1, ε2 ∈ S

d, a.e. x ∈ Ω.

(c) For any ε ∈ S
d, x �→ Bve(x, ε) is measurable on Ω.

(d) The mapping x �→ Bve(x,0) ∈ Q.




(6.4.5)

Clearly, assumption (6.4.4) is satisfied in the case of the linear viscoelastic
constitutive law (2.3.3) if the components aijkl belong to L∞(Ω) and satisfy
the usual properties of symmetry and ellipticity. Assumption (6.4.5) holds
for (2.3.3) if the coefficients bijkl belong to L∞(Ω) and satisfy the usual
symmetry property.

An example of a nonlinear viscoelastic constitutive law is

σ = Aveε(u̇) + γ (ε(u) − PKε(u)). (6.4.6)

Here, Ave is a fourth-oder tensor which satisfies (6.4.4), γ > 0, K is a closed
convex subset of S

d such that 0 ∈ K, and PK : S
d → K denotes the projection

map on K. Since the projection map is non-expansive, (6.3.2), it follows that
the elasticity operator Bve(x, ε) = γ (ε−PKε) satisfies condition (6.4.5). We
conclude that the results presented below are valid for viscoelastic materials
described by (2.3.3) or by (6.4.6), under the above assumptions.

Finally we consider rate-type viscoplastic constitutive law of the form

σ̇ = Avpε(u̇) + Gvp(σ, ε(u)), (6.4.7)

where Avp and Gvp are the constitutive functions. The elasticity tensor Avp

is assumed to be linear, while Gvp may be nonlinear. In Chap. 9 we assume
that Avp = (avpijkl) and Gvp satisfy the following conditions.
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(a) Avp : Ω × S
d → S

d.

(b) avpijkl ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d.

(c) Avp(x)σ · τ = σ · Avp(x)τ ∀σ, τ ∈ S
d, a.e. x ∈ Ω.

(d) There exists mvp > 0 such that
Avp(x)τ · τ ≥ mvp‖τ‖2 ∀ τ ∈ S

d, a.e. x ∈ Ω.




(6.4.8)

(a) Gvp : Ω × S
d × S

d → S
d.

(b) There exists Lvp > 0 such that
‖Gvp(x,σ1, ε1) − Gvp(x,σ2, ε2)‖
≤ Lvp (‖σ1 − σ2‖ + ‖ε1 − ε2‖)
∀σ1,σ2, ε1, ε2 ∈ S

d, a.e. x ∈ Ω.

(c) For any σ, ε ∈ S
d, x �→ Gvp(x,σ, ε) is measurable on Ω.

(d) The mapping x �→ Gvp(x,0,0) ∈ Q.




(6.4.9)

An example of a rate-type viscoplastic constitutive relation of this type
is the Perzyna law, in which Gvp does not depend on ε. It is given by

ε̇ = A−1
vp σ̇ +

1
λ

(σ − PKσ), (6.4.10)

where Avp is a fourth order elastic tensor satisfying (6.4.8), A−1
vp is its inverse,

λ > 0 is a viscosity constant, K ⊂ S
d is a nonempty, closed, and convex set

in the space of symmetric tensors, and PK is the projection mapping on K.
Here, the function Gvp is given by

Gvp(σ, ε) = − 1
λ

Avp(σ − PKσ),

and satisfies condition (6.4.9). Since σ = PKσ iff σ ∈ K, equation (6.4.10)
implies that viscoplastic deformations occur only when the stress tensor σ
lies outside of K. In this way K represents the domain where the material
behaves elastically, and plastic deformations take place outside of it. It is
often defined by

K = {σ ∈ S
d : F(σ) ≤ 0 },

where F : S
d → R is the so-called yield function , a continuous and convex

function which satisfies F(0) < 0. The equation F(σ) = 0 is called the yield
condition . A well-known example of the yield function is that of von Mises,

F(σ) =
1
2

‖σD‖2 − k2,

where σD is the deviator part of σ and k is a positive constant, the so-called
yield limit. Existence results in the study of displacement-traction boundary-
value problems for viscoplastic materials, including those of the form (6.4.10)
can be found in [5, 85,194,197,198].
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In Chap. 12 of this book we consider viscoelastic and viscoplastic con-
stitutive laws with damage. In the viscoelastic models we assume that the
damage does not affect the viscosity of the material, only its elastic behaviour;
therefore, we replace (6.4.3) with the constitutive relation

σ = Aveε(u̇) + Bve(ε(u), ζ), (6.4.11)

in which ζ denotes the damage field.
In the viscoplastic models we assume that the damage affects only the

viscoplastic properties of the material, and the constitutive law is of the form

σ̇ = Avpε(u̇) + Gvp(σ, ε(u), ζ). (6.4.12)

In the study of contact problems involving the constitutive relations
(6.4.11) and (6.4.12) we assume that the viscosity operator Ave and the
elasticity operator Avp satisfy (6.4.4) and (6.4.8), respectively. The assump-
tions on the elasticity operator Bve and the viscoplastic operator Gvp will be
specified when needed in Sects. 12.1 and 12.4, respectively.



7 Elastic Contact

Existence results for the problem of quasistatic contact between an elastic
material and a reactive foundation were first obtained in [18] and [19]. In both
papers the normal compliance contact condition was employed. Additional
results were obtained in [25,199,200]. Recently, Andersson in [24] succeeded
in passing to the normal compliance limit and established the existence of a
weak solution for the problem with the idealized Signorini contact condition.
In this chapter we deal with contact models for linearly elastic materials of
the form (6.4.1), and we assume that conditions (6.4.2) are satisfied.

The contact problem for an elastic material with friction, when contact
is modelled with the normal compliance condition, is presented in Sect. 7.1.
The existence of a solution when the friction coefficient is sufficiently small
is stated, and a bound on the solution in terms of the rates of the forces
is provided. In Sect. 7.2 the same problem, but with the Signorini contact
condition, is described. The existence of a weak solution is obtained by using
the results of the previous section, and by obtaining the necessary a priori
estimates and passing to the limit when normal compliance approaches the
rigid body limit.

Bilateral frictional contact between an elastic body and a rigid foundation
is described in Sect. 7.3, where the well-posedness of the problem is described.
A remark on the problem with large friction coefficient can be found at the
end of the section. Problems of frictional contact with a general dissipative
surface functional are presented in Sect. 7.4, and some concrete examples
are given, as well. The complete proofs of of Theorems 7.3.1 and 7.4.1 are
provided in Sect. 7.5. They are based on two abstract results for evolutionary
variational inequalities which we state as well.

7.1 Frictional Contact with Normal Compliance

The classical formulation of the problem of quasistatic frictional contact be-
tween an elastic body and a deformable foundation, where the response of
the latter is represented by the normal compliance condition (2.6.2), is as
follows.

Problem Pel−nc. Find a displacement field u : Ω× [0, T ] → R
d and a stress

field σ : Ω × [0, T ] → S
d such that

M. Shillor, M. Sofonea, J.J. Telega: Models and Analysis of Quasistatic Contact, Lect. Notes
Phys. 655, (2001), 101–115
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004
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σ = Belε(u) in ΩT , (7.1.1)
Div σ + fB = 0 in ΩT , (7.1.2)

u = 0 on ΓD × (0, T ), (7.1.3)
σn = fN on ΓN × (0, T ), (7.1.4)

−σn = pn(un − g),
‖στ‖ ≤ µpn(un − g),

στ = −µpn(un − g)
u̇τ

‖u̇τ‖
if u̇τ �= 0




on ΓC × (0, T ), (7.1.5)

u(0) = u0 in Ω. (7.1.6)

Here, pn is a general normal compliance function, g denotes the gap between
ΓC and the foundation, measured along the normal n, (see Fig. 1) and the
choice pτ = µpn for the friction bound has been made. We note that although
there are no time derivatives in the equations, an initial condition is needed
because of the friction law.

In [14, 15, 18, 19, 199–201] as well as other publications, the power law
pn(r) = cnr

mn
+ was used. In [18, 199, 200] the problem was considered with

pτ = µpn and it was shown that it has a weak solution when µ is sufficiently
small. The proofs were based on the backward Euler finite difference time
discretization, a priori estimates on the approximate solutions, and passage
to the discretization limit.

A version of the problem can be found in [19] where the stress in the
contact conditions was regularized with a time mollifier. It was proved in
[19] that under smallness assumptions on the data, the forces and the gap
function, the mollified problem has a weak solution, which actually is a strong
solution.

In these papers the uniqueness of the solutions was left open, and indeed,
the question is still unresolved. Moreover, there are restrictions on the size
of the data and on the normal compliance exponents. These restrictions are
common to models with purely elastic constitutive relations, and arise from
the mathematical methods of addressing the problems. Similar results can be
found in [25,202].

We now describe the results obtained in [200] for problem Pel−nc. To that
end we assume that d = 3, Bel satisfies (6.4.2) and the normal and tangential
compliance functions satisfy

pn(r) = cnr
mn
+ , pτ = µpn, where cn ≥ 0, 1 ≤ mn < 3. (7.1.7)

For convenience we may let the nonnegative coefficient of friction µ be
defined on the whole of the boundary. We assume that µ is a multiplier on
H

1
2 (Γ ), i.e., that the mapping ξ �−→ µξ : H

1
2 (Γ ) → H

1
2 (Γ ) is bounded with

the appropriate norm ‖µ‖, so that

‖µξ‖
H

1
2 (Γ )

≤ ‖µ‖ ‖ξ‖
H

1
2 (Γ )

∀ξ ∈ H
1
2 (Γ ). (7.1.8)
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We note that µ is such a multiplier if it is Lipschitz continuous on Γ .
The gap function g is assumed to be the trace of a function gext such that

gext ∈ H1(Ω), gext ≥ 0 a.e. on Ω, (7.1.9)

and then g = gext on ΓC .
The force density and the surface tractions satisfy:

fB ∈ W 1,2(0, T ;L2(Ω)3), fB(0) = 0 (7.1.10)

fN ∈ W 1,2(0, T ;H−1/2(Γ )3), supp fN (t) ⊂ ΓN , fN (0) = 0. (7.1.11)

Here and below, we denote by supp fN (t) the support of the element fN (t) ∈
H−1/2(Γ )3, for all t ∈ [0, T ]. Moreover, in what follows 〈·, ·〉−1/2,1/2 denotes
the duality pairing between H−1/2(Γ )m and H1/2(Γ )m, for an integer m.

To consider the variational formulation of the elastic contact problem with
normal compliance, Pel−nc, we need the following additional notation. Let V
be the space given in (6.2.3), denote by

a(u,v) =
∫
Ω

bijklui,juk,l dx,

the elasticity bilinear form on V ×V , and let the normal compliance functional
be given by

jn(u,v) =
∫
ΓC

pn(un − g)vn dS.

Next, the cut-off function ψ ∈ C∞(R3) is introduced, which has the value
one in a neighborhood of ΓC and equals zero on a neighborhood of Γ̄D ∪ Γ̄N
and 0 ≤ ψ ≤ 1. For a choice of the function ψ and further details we refer
the reader to [200]. However, we note that the construction of ψ is possible
only when the parts Γ̄C and Γ̄D ∪ Γ̄N are separated by another portion of
the surface that is free of tractions.

A straightforward use of Green’s formula (6.2.11) and of (7.1.2) – (7.1.5)
yields the following variational formulation of problem Pel−nc.

Problem PVel−nc. Find a displacement field u : [0, T ] → V such that u(0) =
u0 and

a(u(t),v − u̇(t)) + jn(u(t),v − u̇(t))

−〈µψσn(u(t)), ‖vτ‖ − ‖u̇τ (t)‖〉−1/2,1/2

≥ (fB ,v − u̇(t))L2(Ω)3 + 〈fN ,v − u̇(t)〉−1/2,1/2, (7.1.12)

for all v ∈ V and a.e. t ∈ (0, T ).

The following result has been established in [200].
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Theorem 7.1.1. Assume that (6.4.2) and (7.1.7)–(7.1.11) hold and u0 = 0.
Then, there exists a solution u ∈ W 1,2(0, T ;V ) for problem PVel−nc, provided
that ‖µ‖ is sufficiently small. Moreover, u satisfies

‖u(t)‖V ≤ C1

∫ t

0
‖ḟB(τ)‖L2(Ω)3 dτ + C2

∫ t

0
‖ḟN (τ)‖H−1/2(Γ )3 dτ + C3,

for all t ∈ [0, T ].

Here C1, C2 and C3 are three positive constants which depend on the
problem data. We note that the growth of u is controlled by the growth rates
of the body force and surface tractions. The solutions were also shown to
satisfy certain additional bounds. The proof in [200] has been based on the
backward Euler finite difference time discretization, a priori estimates on the
approximate solutions, and passage to the discretization limit.

The variational formulation in [19] was obtained from (7.1.12) by replacing
the normal compliance function pn with a time averaged regularization. The
existence result in [19] is very similar to Theorem 7.1.1 of [200], however,
the smallness of the initial displacements was assumed instead of that of
the friction coefficient. The proof was accomplished by using tools from the
theory of differential inclusions and duality, together with a priori estimates.

7.2 Frictional Contact with Signorini’s Condition

The classical formulation of the limit problem, that is the problem with the
Signorini nonpenetration condition, has been addressed recently in [24], and
is as follows.

Problem Pel−S . Find a displacement field u : Ω× [0, T ] → R
d and the stress

field σ : Ω× [0, T ] → S
d such that (7.1.1)–(7.1.4), (7.1.6), hold, together with

the Signorini and Coulomb conditions,

σn ≤ 0, un ≤ g, σn(un − g) = 0, (7.2.1)

‖στ‖ ≤ −µσn,

στ = −µσn
u̇τ

‖u̇τ‖
if u̇τ �= 0, (7.2.2)

on ΓC × (0, T ).

The problem has a weak solution provided that the friction coefficient is
sufficiently small, [24].

To study Problem Pel−S we use the space V , (6.2.3), and denote by Kg

the convex set of admissible displacements

Kg = { w ∈ V : wn ≤ g on ΓC }.
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Next, as above, the cut-off function ψ ∈ C∞
0 (Rd) is introduced, which has

the value one in a neighborhood of Γ̄C and equals zero on a neighborhood of
Γ̄D ∪ Γ̄Tr+, where ΓTr+ is a part of ΓN adjacent to ΓC where the external
tractions must vanish. The need to separate the contact surface from the
parts of the surface where the Dirichlet condition is prescribed and where
active tractions may act is due to the shifting technique used in the proof.
Since we do not use the method in this monograph, we refer the reader to
the article [24] and the references therein for details.

The variational formulation, in terms of the displacements, is as follows.

Problem PVel−S . Find a displacement field u : [0, T ] → V such that u(0) =
u0, u(t) ∈ Kg, for all t ∈ [0, T ], and for almost all t ∈ (0, T ),

a(u(t),v − u̇(t)) − 〈ψσn(u(t)), vn − u̇n(t)〉−1/2,1/2

−〈µψσn(u(t)), ‖vτ‖ − ‖u̇τ (t)‖〉−1/2,1/2

≥ (fB ,v − u̇(t))H + 〈fN ,v − u̇(t)〉−1/2,1/2 ∀v ∈ V, (7.2.3)

and
〈ψσn(u(t)), zn − un(t)〉−1/2,1/2 ≥ 0 ∀z ∈ Kg. (7.2.4)

Here, the initial displacement u0 is an element of Kg and satisfies some
additional compatibility assumptions (see [24]).

Assume that the data satisfy:

fB ∈ W 1,2(0, T ;L2(Ω)d), (7.2.5)

fN ∈ W 1,2(0, T ;H−1/2(Γ )d), supp fN (t) ⊂ ΓN − ΓTr+, (7.2.6)

and the gap g is assumed to be the trace of a function gext such that

gext ∈ H1+α(Ω), gext ≥ 0 a.e. on Ω, (7.2.7)

for some α > 0. The elasticity tensor Bel = (bijkl) satisfies (6.4.2) and the
coefficients bijkl are locally in C0,β(Ω), for some 0 < β ≤ 1.

The friction coefficient is assumed to satisfy the conditions described in
the previous section (page 102), that is it is a positive multiplier on H

1
2 (Γ ).

Moreover, it is also assumed that µ ∈ L∞(Γ ).
Finally, the contact surface ΓC is of class C1,β , (see, e.g., [51, Ch. 2]).
Under these assumptions, the following existence theorem was established

in [24].

Theorem 7.2.1. Assume that (6.4.2), (7.2.5)–(7.2.7) and the other condi-
tions above hold true. Then, there exists a solution u ∈ W 1,2(0, T ;V ) for
problem PVel−S, provided that ‖µ‖ and ‖µ‖L∞(ΓC) are sufficiently small.

The proof of the theorem was based on a sequence of approximations
using the normal compliance. In each approximate problem the Signorini
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condition in (7.2.1) was replaced with σn = −λpn(un − g), where λ > 0 was
the regularization parameter and pn was the normal compliance function.
First, the approximate problems with normal compliance were discretized in
time and a priori estimates on their solutions obtained. Passing to the time
discretization limit yielded a solution for the quasistatic problem with normal
compliance. Using now a regularity result, based on the shifting technique,
the limit Signorini problem was obtained as λ → ∞. Passing to the limit was
made possible by this extra regularity.

The uniqueness or nonuniqueness of solutions for problems with elastic
materials with normal compliance or the Signorini condition is an unresolved
question, and so is the existence of solutions for large µ. Actually, estimat-
ing on how small µ has to be for solutions of Pel−nc or Pel−S to exist are
interesting but difficult open problems.

7.3 Bilateral Frictional Contact

We now assume that the contact is bilateral, i.e., there is no loss of contact
during the process. We recall that this is the meaning of ‘bilateral’ in this
monograph. This assumption holds for pistons and other relatively moving
parts in machinery. In this case the normal displacement un vanishes on ΓC
at all times. We model friction with the Tresca law, and assume that the
constitutive relation is (6.4.1). Under the previous assumptions, the classical
formulation of the mechanical problem is the following.

Problem Pel−b. Find a displacement field u : Ω × [0, T ] → R
d and a stress

field σ : Ω × [0, T ] → S
d such that

σ = Belε(u) in ΩT , (7.3.1)
Div σ + fB = 0 in ΩT , (7.3.2)

u = 0 on ΓD × (0, T ), (7.3.3)
σn = fN on ΓN × (0, T ), (7.3.4)

un = 0,
‖στ‖ ≤ H,

στ = −H u̇τ
‖u̇τ‖

if u̇τ �= 0




on ΓC × (0, T ), (7.3.5)

u(0) = u0 in Ω. (7.3.6)

Here, u0 is the initial displacements field and H is the friction bound.
We now turn to a variational formulation for the mechanical problem

(7.3.1)–(7.3.6). The space of admissible displacements is chosen as V1, (6.2.7),
equipped with the inner product (6.2.5).

We assume that the elasticity operator Bel satisfies conditions (6.4.2), the
force and the traction densities satisfy
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fB ∈ W 1,∞(0, T ;L2(Ω)d), fN ∈ W 1,∞(0, T ;L2(ΓN )d), (7.3.7)

and the friction bound satisfies

H ∈ L∞(ΓC), H ≥ 0 a.e. on ΓC . (7.3.8)

We denote by (·, ·)Q the inner product on the space Q, (6.2.2), and define the
bilinear form a : V1 × V1 → R by

a(u,v) = (Belε(u), ε(v))Q, (7.3.9)

and the functional j : V1 → R+ by

j(v) =
∫
ΓC

H ‖vτ‖ dS. (7.3.10)

We let F(t) be the element of V1 given by

(F(t),v)V =
∫
Ω

fB(t) · v dx+
∫
ΓN

fN (t) · v dS, (7.3.11)

for all v ∈ V1 and t ∈ [0, T ]. It follows from (7.3.7) and (7.3.8) that the
integrals in (7.3.11) and (7.3.10) are well defined and

F ∈ W 1,∞(0, T ;V1). (7.3.12)

Finally, we assume that the initial data satisfy

u0 ∈ V1, (7.3.13)

a(u0,v) + j(v) ≥ (F(0),v)V ∀v ∈ V1. (7.3.14)

The last condition is a compatibility condition for the initial displacement
field.

A straightforward application of Green’s formula (6.2.11) yields the fol-
lowing variational formulation of the contact problem (7.3.1)–(7.3.6).

Problem PVel−b. Find a displacement field u : [0, T ] → V1 such that

a(u(t),v − u̇(t)) + j(v) − j(u̇(t))

≥ (F(t),v − u̇(t))V ∀v ∈ V1, a.e. t ∈ (0, T ), (7.3.15)

u(0) = u0. (7.3.16)

The existence of the unique solution to problem PVel−b is stated next.

Theorem 7.3.1. Assume that conditions (6.4.2), (7.3.7), (7.3.8), (7.3.13)
and (7.3.14) hold. Then Problem PVel−b has a unique solution which satis-
fies u ∈ W 1,∞(0, T ;V1). Moreover, the mapping (F,u0) �→ u is Lipschitz
continuous from W 1,1(0, T ;V1) × V1 to L∞(0, T ;V1).
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Theorem 7.3.1 was established in [51] using an abstract result for evolu-
tionary variational inequalities. We note that in addition to the existence of
the solutions it guarantees the continuous dependence on the problem data
fB , fN , and u0. Its proof will be presented in Sect. 7.5.

Let u ∈ W 1,∞(0, T ;V1) be the solution of Problem PVel−b and let σ be the
stress field given by (7.3.1). It can be shown that σ ∈ W 1,∞(0, T ;Q1), where
Q1 is defined in (6.2.10). A mixed formulation of the problem is to find a
pair of functions (u,σ) which satisfies (7.3.15), (7.3.16) and (7.3.1). Such a
pair is called a weak solution of the bilateral contact problem with Tresca’s
friction law. It follows from Theorem 7.3.1 that problem (7.3.1)–(7.3.6) has
a unique weak solution which depends Lipschitz continuously on the data.

We remark here that the two-dimensional frictional sliding contact prob-
lem for a neo-Hookean material with constant sliding and Coulomb’s friction
condition with constant friction coefficient was considered in [203]. It was
shown there that the problem is ill-posed (unstable to small perturbations)
when the friction coefficient is large. Presently, we are unaware of any related
results, except as was mentioned above, restrictions on the friction coefficient
in the context of elastic materials are common, and there are no existence
results for large µ. Also, in the static case large friction coefficient is known to
cause mathematical difficulties, see e.g., [204]. This may indicate that some
viscosity is essential in contact models. However, it seems that the restric-
tions on the friction coefficient are for mathematical reasons, and not because
a large friction coefficient may cause mechanical seizure since the latter pro-
cess is not taken into account in the model. Clearly, the issue deserves further
study.

7.4 Contact with Dissipative Friction Potential

In the frictional contact problem considered in this section friction is mod-
elled by a general velocity dependent dissipation functional. Existence and
uniqueness of a weak solution for the problem is shown by using arguments
from the theory of evolutionary variational inequalities. These results are
then applied to a variety of concrete frictional contact problems which we
describe in some detail.

The classical formulation of the problem is the following.

Problem Pel−d. Find a displacement field u : Ω × [0, T ] → R
d and a stress

field σ : Ω × [0, T ] → S
d such that

σ = Belε(u) in ΩT , (7.4.1)
Div σ + fB = 0 in ΩT , (7.4.2)

u = 0 on ΓD × (0, T ), (7.4.3)
σn = fN on ΓN × (0, T ), (7.4.4)

u ∈ U, −σ n · (v − u̇) ≤ ϕ(v) − ϕ(u̇)
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∀v ∈ U on ΓC × (0, T ), (7.4.5)
u(0) = u0 in Ω. (7.4.6)

Here, frictional contact is modelled with the subdifferential boundary con-
dition (7.4.5) in which U is the set of admissible functions and ϕ is a given
function representing the process. Examples and detailed explanations of in-
equality problems which lead to boundary conditions of this form will be
presented at the end of this section.

We assume that U ⊂ H1(Ω)d and ϕ : ΓC × R
d → R. To accommodate

the homogeneous displacement boundary condition (7.4.3) and the contact
condition (7.4.5), we define

U1 = V ∩ U. (7.4.7)

Let j : U1 → (−∞,∞] be the functional

j(v) =



∫
ΓC

ϕ(v) dS if ϕ(v) ∈ L1(ΓC),

∞ otherwise.
(7.4.8)

We assume that the elasticity tensor satisfies condition (6.4.2), and

U1 is a closed subspace of H1(Ω)d such that C∞
0 (Ω)d ⊂ U1; (7.4.9)

j is proper, convex and lower semicontinuous on U1. (7.4.10)

The body forces, the surface tractions, and the initial displacements are
assumed to satisfy

fB ∈ W 1,2(0, T ;L2(Ω)d), fN ∈ W 1,2(0, T ;L2(Γ2)d), (7.4.11)

u0 ∈ U1. (7.4.12)

For u,v ∈ U1 we define

(u,v)U1 = (Belε(u), ε(v))Q, ‖u‖U1 = (u,u)1/2U1
.

It follows from assumptions (6.4.2) on Bel and Korn’s inequality (6.2.4) that
(·, ·)U1 is an inner product on U1, and ‖ · ‖U1 and ‖ · ‖H1(Ω)d are equivalent
norms on U1, thus, (U1, ‖ · ‖U1) is a real Hilbert space.

The element F(t) of U1, for t ∈ [0, T ], is given by

(F(t),v)U1 =
∫
Ω

fB(t) · v dx+
∫
ΓN

fN (t) · v dS ∀v ∈ U1. (7.4.13)

It is straightforward to show that if (u,σ) is a sufficiently regular pair of
functions satisfying (7.4.2)–(7.4.5), then u(t) ∈ U1 and

(σ(t), ε(v) − ε(u̇(t)))Q + j(v) − j(u̇(t))
≥ (F(t),v − u̇(t))U1 ∀v ∈ U1,
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for all t ∈ [0, T ]. Combining this inequality with the constitutive relation
(7.4.1) and the initial condition (7.4.6), we obtain the following variational
formulation of problem (7.4.1)–(7.4.6), with the displacements field as the
unknown.

Problem PVel−d. Find a displacement field u : [0, T ] → U1 such that

(Belε(u(t)), ε(v) − ε(u̇(t)))Q + j(v) − j(u̇(t))
≥ (F(t),v − u̇(t))U1 ∀v ∈ U1, a.e. t ∈ (0, T ), (7.4.14)

u(0) = u0, (7.4.15)

To study the elastic problem PVel−d we need the following compatibility
assumption on the initial displacements u0,

(u0,v)U1 + j(v) ≥ (F(0),v)U1 ∀v ∈ U1, (7.4.16)

which means that the initial displacements vector is in an equilibrium state
compatible with the force F(0) acting at t = 0.

We note that Problem PVel−d resembles Problem PVel−b, however, the func-
tional j is more general.

The well-posedness of problem Problem PVel−d is stated in the following
result and will be proved in the next section.

Theorem 7.4.1. Assume that conditions (6.4.2), (7.4.9)–(7.4.12) and
(7.4.16) hold. Then Problem PVel−d has a unique solution u ∈ W 1,2(0, T ;U1).

Let u ∈ W 1,2(0, T ;U1) be the solution of Problem PVel−d and let σ be the
stress field given by (7.4.1). Using (6.4.2) and (7.4.11) it can be shown that
σ ∈ W 1,2(0, T ;Q1).

A pair of functions (u,σ) which satisfies (7.4.1), (7.4.14) and (7.4.15) is
called a weak solution of the elastic problem (7.4.1)–(7.4.6). We conclude
that the quasistatic elastic problem has a unique weak solution.

Examples of subdifferential conditions with friction. We end this sec-
tion with six examples of contact and friction laws which lead to the inequality
(7.4.5), for which (7.4.9) and (7.4.10) hold. Then, by applying Theorem 7.4.1
we conclude that the initial-boundary value problem in each of the examples
has a unique weak solution.

(i) Bilateral contact with Tresca’s friction law. The contact condition
is

un = 0,
‖στ‖ ≤ H,

στ = −H u̇τ
‖u̇τ‖

if u̇τ �= 0




on ΓC × (0, T ). (7.4.17)

Here H ∈ L∞(ΓC) is a positive friction bound and the contact is assumed to
be bilateral.



7.4 Contact with Dissipative Friction Potential 111

The set of admissible functions U consists of those elements of H1(Ω)d

whose normal component vanishes on ΓC . Thus, by (7.4.7) U1 = V1, where
V1 is the space given in (6.2.7). It is straightforward to show that if (u,σ) is
a pair of sufficiently regular functions satisfying (7.4.17) then

σn · (v − u̇) ≥ H(‖u̇τ‖ − ‖vτ‖) ∀v ∈ U,

a.e. on ΓC×(0, T ). So, the contact condition (7.4.5) holds with ϕ(v) = H ‖vτ‖
and the functional j is given by

j(v) =
∫
ΓC

H ‖vτ‖ dS ∀v ∈ V1.

In this case conditions (7.4.9) and (7.4.10) hold. We conclude that the
elastic problem (7.4.1)–(7.4.4), (7.4.6), (7.4.17) has a unique weak solution.
Note that this problem was already presented in a slightly different form in
Sect. 7.3.

(ii) Bilateral contact with power-law friction. We now consider a prob-
lem with the boundary conditions

un = 0, στ = −µ ‖u̇τ‖p−1u̇τ on ΓC × (0, T ), (7.4.18)

where µ ≥ 0 is the coefficient of friction and 0 < p ≤ 1. The tangential shear
is proportional to the p-th power of the tangential speed. Such a boundary
condition arises when the contact surface is lubricated with a thin layer of a
non-Newtonian fluid.

It is straightforward to show that if (u,σ) is a pair of sufficiently regular
functions satisfying (7.4.18) then the contact condition (7.4.5) holds with

U = {v ∈ H1(Ω)d : vn = 0 on ΓC}

and
ϕ(v) =

µ

p+ 1
‖vτ‖p+1.

It follows from (7.4.7) that U1 = V1 and (7.4.9) holds true. Assuming µ ∈
L∞(ΓC), we deduce from (7.4.8) that the functional

j(v) =
1

p+ 1

∫
ΓC

µ ‖vτ‖p+1dS ∀v ∈ V1

satisfies (7.4.10). We conclude that Theorem 7.4.1 applies to the mechanical
problem (7.4.1)–(7.4.4), (7.4.6) and (7.4.18).

(iii) Power-law contact with Tresca’s friction law. We consider a con-
tact problem with the boundary conditions

−σn = κ |u̇n|q−1u̇n,

‖στ‖ ≤ H,

στ = −H u̇τ
‖u̇τ‖

if u̇τ �= 0




on ΓC × (0, T ). (7.4.19)



112 7 Elastic Contact

Here H ∈ L∞(ΓC) and κ ∈ L∞(ΓC) are positive functions, and 0 < q ≤ 1.
The normal contact stress depends on a power of the normal speed. Such a
condition has been considered in [22,23]. We have U = H1(Ω)d, U1 = V ,

ϕ(v) =
κ

q + 1
|vn|q+1 +H ‖vτ‖,

and
j(v) =

1
q + 1

∫
ΓC

(κ |vn|q+1 +H ‖vτ‖) dS ∀v ∈ V.

Assumptions (7.4.9) and (7.4.10) hold and we conclude that the abstract
results apply to the frictional contact problem (7.4.1)–(7.4.4), (7.4.6) and
(7.4.19).

(iv) Power-law contact with friction. In this example the normal stress
is proportional to a power of the normal speed, while the tangential shear
is proportional to a power of the tangential speed. We choose the following
contact boundary conditions

−σn = κ |u̇n|q−1u̇n, στ = −µ ‖u̇τ‖p−1u̇τ on ΓC × (0, T ). (7.4.20)

Here µ ∈ L∞(ΓC) and κ ∈ L∞(ΓC) are positive functions, 0 < p, q ≤ 1. We
choose U = H1(Ω)d, U1 = V and

ϕ(v) =
κ

q + 1
|vn|q+1 +

µ

p+ 1
‖vτ‖p+1.

We may apply Theorem 7.4.1 to problem (7.4.1)–(7.4.4), (7.4.6) and (7.4.20),
since assumptions (7.4.9) and (7.4.10) hold.

(v) Normal damped response with Tresca’s friction law. In this prob-
lem the contact condition models the normal damped response of a thin lu-
bricant layer. The contact pressure depends on the velocity, but only under
compression, and the contact conditions are

−σn = κ (u̇n)+ + p0,

‖στ‖ ≤ H,

στ = −H u̇τ
‖u̇τ‖

if u̇τ �= 0




on ΓC × (0, T ). (7.4.21)

Here, H ∈ L∞(ΓC), κ ∈ L∞(ΓC) and p0 ∈ L∞(ΓC) are positive functions.
We choose U = H1(Ω)d, U1 = V , and

ϕ(v) =
κ

2
(
(vn)+

)2 + p0vn +H ‖vτ‖.

The results of Theorem 7.4.1 apply to the viscoelastic problem (7.4.1)–(7.4.4),
(7.4.6) and (7.4.21), since (7.4.9) and (7.4.10) are satisfied.
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(vi) Normal damped response with power-law friction. This is a vari-
ant of Examples (iv) and (v) above, and the contact conditions are,

−σn = κ (u̇n)+ + p0, στ = −µ ‖u̇τ‖p−1u̇τ on ΓC × (0, T ). (7.4.22)

Here, κ ∈ L∞(ΓC), µ ∈ L∞(ΓC) and p0 ∈ L∞(ΓC) are positive functions,
0 < p ≤ 1. We choose U = H1(Ω)d, U1 = V , and

ϕ(v) =
κ

2
(
(vn)+

)2 + p0vn +
µ

p+ 1
‖vτ‖p+1.

Since assumptions (7.4.9) and (7.4.10) hold, our results apply to the problem
(7.4.1)–(7.4.4), (7.4.6) and (7.4.22), and we conclude that it has a unique
weak solution.

We note that in the examples above the normal pressure and tangential
shear stress are related to the normal and tangential velocities, and the set
of admissible displacement fields is a linear subspace. These requirements
are dictated by the structure of the functional ϕ (which depends only on
the surface velocity) and by condition (7.4.9). Important extensions of the
results presented in this section would allow additional dependence of ϕ on
the displacements, such as that in the normal compliance contact condition,
or unilateral conditions for the admissible displacement fields, such as those
in the Signorini contact condition. However, such extensions are unavailable
as of now.

We end this section with the remark that the results presented here in
the study of contact with dissipative frictional potential may be extended
to viscoelastic materials of the form (6.4.3). Details can be found in [205].
There, the existence of the weak solution of the viscoelastic contact model
with dissipative frictional potential was proved and the convergence of the
solution to the solution of the problem PVel−d, as the viscosity tensor Ave

converges to zero, was obtained.

7.5 Proof of Theorems 7.3.1 and 7.4.1

To prove the existence and uniqueness of the solution for Problem PVel−b we
shall use the following abstract result for evolutionary variational inequalities.

Let X be a real Hilbert space with the inner product (·, ·)X and consider
the problem of finding u : [0, T ] → X such that

a(u(t), v − u̇(t)) + j(v) − j(u̇(t)) ≥ (f(t), v − u̇(t))X
∀ v ∈ X, a.e. t ∈ (0, T ), (7.5.1)

u(0) = u0. (7.5.2)

In the study of (7.5.1)–(7.5.2) we make the following assumptions:
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a : X ×X → R is a bilinear symmetric form such that

(a) there exists M > 0 such that
|a(u, v)| ≤ M‖u‖X‖v‖X ∀u, v ∈ X.

(b) there exists m > 0 such that a(v, v) ≥ m‖v‖2
X ∀v ∈ X.


 (7.5.3)

j is a continuous seminorm on X. (7.5.4)

f ∈ W 1,p(0, T ;X). (7.5.5)

u0 ∈ X. (7.5.6)

a(u0, v) + j(v) ≥ (f(0), v)X ∀ v ∈ X. (7.5.7)

The well-posedness of problem (7.5.1)–(7.5.2) follows.

Theorem 7.5.1. Assume that (7.5.3)–(7.5.7) hold. Then, there exists a
unique solution u ∈ W 1,p(0, T ;X) of problem (7.5.1)–7.5.2). Moreover, the
mapping (f, u0) �−→ u is Lipschitz continuous from W 1,1(0, T ;X) × X to
L∞(0, T ;X).

The proof of Theorem 7.5.1 can be found in [51, p. 69], and it is based on
a time-discretization method, and on compactness and lower semicontinuity
arguments. A version of this theorem in the case p = ∞ can be obtained from
Theorem 10.2.1 (on page 168).

We use Theorem 7.5.1 to prove Theorem 7.3.1.

Proof (Theorem 7.3.1). We choose X = V1 and p = ∞. Assumption (7.3.8)
implies that the functional j, given in (7.3.10), is a continuous seminorm
on V1 and assumption (6.4.2) implies that the form a given by (7.3.9) is a
symmetric continuous and coercive bilinear form on V1. Therefore, it follows
from (7.3.12)–(7.3.14) that Theorem 7.3.1 is a consequence of Theorem 7.5.1.
�

We turn now to the existence and uniqueness of the solution for Problem
PVel−d. To this end we employ the following abstract result.

Theorem 7.5.2. Let (X, (·, ·)X) be a real Hilbert space and let j : X →
(−∞,∞] be proper, convex and lower semicontinuous. Assume that f ∈
W 1,2(0, T ;X) and u0 ∈ X are such that

sup
v∈D(j)

{(f(0), v)X − (u0, v)X − j(v)} < ∞,

where D(j) is the effective domain of j,

D(j) = {v ∈ X : j(v) < +∞}.

Then, there exists a unique element u ∈ W 1,2(0, T ;X) satisfying

(u(t), v − u̇(t))X + j(v) − j(u̇(t)) ≥ (f(t), v − u̇(t))X ,

for all v ∈ X, a.e. t ∈ (0, T ), and u(0) = u0.
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Theorem 7.5.2 can be found in [206, p. 117] and was proved by using
arguments of evolution equations with maximal monotone operators.

We use Theorem 7.5.2 to prove Theorem 7.4.1.

Proof (Theorem 7.4.1). We choose X = U1, and note that (7.4.11) and
(7.4.13) imply F ∈ W 1,2(0, T ;U1). Therefore, assumptions (7.4.9), (7.4.10),
(7.4.12) and (7.4.16) allow for the use of Theorem 7.5.2, implying the exis-
tence and uniqueness of an element u ∈ W 1,2(0, T ;U1) which solves Problem
PVel−d. �



8 Viscoelastic Contact

We describe results for contact problems involving viscoelastic materials. It
will be seen that adding viscosity to the models leads to a substantial increase
in the regularity or the smoothness of the solutions, and this allows for further
analysis. Unlike the case of problems for purely elastic materials, there are
numerous results for viscoelastic problems with varying degrees of generality,
and with different boundary conditions. Equally important is the observation
that for many of these problems the uniqueness of the solutions and their
continuous dependence on the problem data are proven.

As can be seen in what follows, the theory for viscoelastic materials is
considerably more developed. These results may be used in applications with
elastic materials by adding a very small viscosity term to the elastic con-
stitutive law. Moreover, there is a very strong indication that in dynamic
contact problems addition of viscosity is essential to the mathematical anal-
ysis. This, we believe, reflects the physical fact that there are no perfectly
elastic materials when changes in the forces are very rapid.

We consider in this chapter viscoelastic materials with constitutive rela-
tion of the form (6.4.3) and we assume, unless stated to the contrary, that
conditions (6.4.4) and (6.4.5) are satisfied.

We begin, in Sect. 8.1, with the problem of frictionless contact between a
viscoelastic body and a rigid foundation. Contact is modelled with the Sig-
norini condition. The proof of the existence theorem is provided in Sect. 8.2,
and we note that in addition to an improved smoothness, the solution is
shown to be unique.

In Sect. 8.3 the problem of frictional contact in which normal compli-
ance condition is used is formulated. The existence of its weak solution is
proved in Sect. 8.4. This is the representative problem described in Chap. 5
in considerable detail.

Bilateral contact with friction can be found in Sect. 8.5 where the dual
formulation is provided, the equivalence of the two problems is shown, and
the existence and uniqueness of the solution, when the friction coefficient is
sufficiently small, stated.

The contact problem with damped response is described in Sect. 8.6 where
the existence of the unique weak solution is presented, under a smallness
condition on some of the problem data.

M. Shillor, M. Sofonea, J.J. Telega: Models and Analysis of Quasistatic Contact, Lect. Notes
Phys. 655, (2001), 117–134
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004
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8.1 Frictionless Contact with Signorini’s Condition

We assume frictionless contact with a rigid foundation, which is modelled with
the Signorini condition. For the sake of simplicity we assume that g = 0, i.e.,
there is no gap between the reference configuration and the foundation.

The classical formulation of the problem is as follows.

Problem Pve−S . Find a displacement field u : Ω × [0, T ] → R
d and a stress

field σ : Ω × [0, T ] → S
d such that

σ = Aveε(u̇) + Bveε(u) in ΩT , (8.1.1)
Divσ + fB = 0 in ΩT , (8.1.2)

u = 0 on ΓD × (0, T ), (8.1.3)
σn = fN on ΓN × (0, T ), (8.1.4)

un ≤ 0, σn ≤ 0, σnun = 0, στ = 0 on ΓC × (0, T ), (8.1.5)
u(0) = u0 in Ω. (8.1.6)

To study the mechanical problem (8.1.1)–(8.1.6) we use the spaces V , Q,
and Q1 defined in (6.2.3), (6.2.2) and (6.2.10), respectively, and the set V2
given in (6.2.8).

In this problem we replace (6.4.4) with the stronger assumption that the
viscosity operator Ave is linear, bounded, symmetric, and positive definite,
that is,

(a) Ave = (aveijkl) : Ω × S
d → S

d.

(b) aveijkl ∈ L∞(Ω).

(c) Ave(x)σ · τ = σ · Ave(x)τ ∀σ, τ ∈ S
d, a.e. x ∈ Ω.

(d) There exists mA > 0 such that
Ave(x)τ · τ ≥ mA ‖τ‖2 ∀ τ ∈ S

d, a.e. x ∈ Ω.




(8.1.7)

We also suppose that the body forces and surface tractions satisfy

fB ∈ W 1,1(0, T ;L2(Ω)d), fN ∈ W 1,1(0, T ;L2(ΓN )d), (8.1.8)

and the initial displacements satisfy

u0 ∈ V2. (8.1.9)

Keeping in mind (8.1.7) we may use on V the inner product

(u,v)A = (Aveε(u), ε(v))Q

and the associated norm ‖u‖A = (u,u)1/2A . Then (V, (·, ·)A) is a real Hilbert
space and ‖ · ‖A is equivalent to the norm ‖ · ‖V .
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Next, we denote by F(t) the element of V given by

(F(t),v)A =
∫
Ω

fB(t) · v dx+
∫
ΓN

fN (t) · v dS, (8.1.10)

for all v ∈ V and t ∈ [0, T ], and we note that conditions (8.1.8) imply

F ∈ W 1,1(0, T ;V ). (8.1.11)

It is straightforward to show that if u and σ are two sufficiently regular
functions satisfying (8.1.2)–(8.1.5), then u(t) ∈ V2, σ(t) ∈ Q1, and for each
t ∈ [0, T ], the following variational inequality holds,

(σ(t), ε(v) − ε(u(t)))Q ≥ (F(t),v − u(t))A ∀v ∈ V2. (8.1.12)

This inequality, combined with (8.1.1) and (8.1.6), leads to the following
variational problem, formulated in terms of displacements.

Problem PVve−S . Find a displacement field u : [0, T ] → V such that u(t) ∈ V2
for all t ∈ [0, T ], and

(Aveε(u̇(t)), ε(v) − ε(u(t)))Q + (Bveε(u(t)), ε(v) − ε(u(t)))Q
≥ (F(t),v − u(t))A ∀v ∈ V2, a.e. t ∈ (0, T ), (8.1.13)

u(0) = u0. (8.1.14)

We remark that Problem PVve−S is formally equivalent to the mechanical
problem (8.1.1)–(8.1.6). Indeed, if u is a smooth solution of the variational
problem Pve−S and σ is given by (8.1.1), by using arguments similar to those
used in Sect. 5.2 it follows that (u,σ) satisfies (8.1.1)–(8.1.6). For this reason
we consider Problem PVve−S as the variational formulation of problem Pve−S ,
and a pair of functions (u,σ) which satisfies (8.1.1), (8.1.13) and (8.1.14) is
called a weak solution of the viscoelastic problem Pve−S .

The unique solvability of the variational problem PVve−S has been estab-
lished in [207], and is stated as follows.

Theorem 8.1.1. Assume (8.1.7)–(8.1.9) and (6.4.5). Then, there exists a
unique solution u of problem PVve−S. Moreover, the solution satisfies

u ∈ W 1,∞(0, T, V ). (8.1.15)

The proof of the theorem is presented in the next section. It is based
on the theory of set-valued maximal monotone operators. We conclude from
Theorem 8.1.1 that problem Pve−S has a unique weak solution.

The results presented in this section were recently extended in [208] to
include friction. There, a quasistatic frictional process for a viscoelastic ma-
terial of the form (8.1.1) was considered, under the assumptions (8.1.7) and
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(6.4.5) on the operators Ave and Bve, respectively. Contact was modelled
with the Signorini condition, and a regularized Coulomb’s law of dry friction
was used. The existence of a weak solution for the model was proved under
a smallness assumption on the (constant) coefficient of friction. The proof
was based on a time-discretization method and fixed point arguments. The
question of the uniqueness of the solution was left open.

A model for the contact between a solidifying aluminium body and the
pan, in the aluminium casting process, was investigated in [84]. It was set
as a frictionless quasistatic contact problem with the Signorini condition for
a Maxwell-Norton viscoelastic material (see page 14). They proved the exis-
tence of a weak solution for the model by using monotonicity and compen-
sated compactness.

8.2 Proof of Theorem 8.1.1

To prove the theorem, we need the following abstract results. Assume X is a
real Hilbert space with the inner product (·, ·)X . Let A : D(A) ⊂ X → 2X be
a multivalued operator. Here, D(A) denotes the domain of the multivalued
operator A, and 2X represents the set of the subsets of X. We say that the
operator A is monotone if

(u1 − u2, w1 − w2)X ≥ 0 ∀w1 ∈ Au1, w2 ∈ Au2, ∀u1, u2 ∈ D(A).

This is an extension of the definition of the monotonicity of a single-valued
operator. We say that the multivalued operator A is maximal monotone if
there exists no monotone multivalued operator B : D(B) ⊂ X → 2X that
is a proper extension of A. It can be shown that if ϕ : X → (−∞,∞] is a
proper, convex, and l.s.c. function, then its subdifferential ∂ϕ is a maximal
monotone operator. It can also be shown that if A1 : D(A1) ⊂ X → 2X is a
maximal monotone operator and A2 : X → X is a single-valued, monotone,
and Lipschitz continuous operator, then A1 + A2 is a maximal monotone
operator. Proofs of these results, as well as that of the next one can be found
in [70, Ch. 1].

Theorem 8.2.1. Let X be a real Hilbert space and denote by I : X → X
the identity operator. If A : D(A) ⊂ X → 2X is a multivalued operator
such that the operator A + ωI is maximal monotone for some real ω, then,
for each f ∈ W 1,1(0, T ;X) and u0 ∈ D(A), there exists a unique function
u ∈ W 1,∞(0, T ;X) which satisfies

u̇(t) +Au(t) 
 f(t) a.e. t ∈ (0, T ), (8.2.1)
u(0) = u0. (8.2.2)

We use this result to prove Theorem 8.1.1.
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Proof (Theorem 8.1.1). By the Riesz Representation Theorem we can define
the operator B : V → V by

(Bu,v)A = (Bveε(u), ε(v))Q ∀u,v ∈ V.

It follows from the assumptions (6.4.5) on Bve and (8.1.7) on Ave that

‖Bu1 −Bu2‖A ≤ LB
mA

‖u1 − u2‖A ∀u1, u2 ∈ V,

i.e., B is a Lipschitz continuous operator. Moreover, the operator

B +
LB
mA

I : V → V

is monotone and Lipschitz continuous, where I denotes the identity operator
on V . Let

IV2 : V → (−∞,∞]

denote the indicator function of the set V2 and let ∂IV2 be its subdifferential.
Since V2 is a nonempty, convex, and closed subset of V , it follows that ∂IV2

is a maximal monotone operator on V and D(∂IV2) = V2. Moreover, the sum

∂IV2 +B +
LB
mA

I : V2 ⊂ V → 2V

is a maximal monotone operator. Thus, conditions (8.1.11) and (8.1.9) allow
us to apply Theorem 8.2.1 with the choice X = V endowed with the inner
product (·, ·)A,

A = ∂IV2 +B, D(A) = V2 ⊂ V,

and ω = LB/mA. We deduce that there exists a unique element u ∈
W 1,∞(0, T ;V ) such that

u̇(t) + ∂IV2(u(t)) +Bu(t) 
 F(t) a.e. t ∈ (0, T ), (8.2.3)
u(0) = u0. (8.2.4)

We observe, next, that for each u, h ∈ V the following are equivalent,

h ∈ ∂IV2(u) ⇐⇒ u ∈ V2, (h,v − u)A ≤ 0 ∀v ∈ V2.

Thus, the differential inclusion (8.2.3) is equivalent to the following varia-
tional inequality: u(t) ∈ V2 and

(u̇(t),v − u(t))A + (Bu(t),v − u(t))A ≥ (F (t),v − u(t))A ∀v ∈ V2,

for a.e. t ∈ (0, T ). It follows that u satisfies u(t) ∈ V2 and the inequality

(Aveε(u̇(t)), ε(v) − ε(u(t)))Q + (Bveε(u(t)), ε(v) − ε(u(t)))Q

≥ (F(t)(t),v − u(t))A ∀v ∈ V2, (8.2.5)
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for a.e. t ∈ (0, T ). Therefore, we conclude from (8.2.4) and (8.2.5) the ex-
istence part in Theorem 8.1.1. The uniqueness of the solution follows from
the uniqueness of the element u ∈ W 1,∞(0, T ;V ), which satisfies (8.2.3) and
(8.2.4), that is by guaranteed by Theorem 8.2.1. �

Let u be the solution of Problem PVve−S and define σ by (8.1.1). Since
u ∈ W 1,∞(0, T ;V ) and assumptions (8.1.7) on Ave and (6.4.5) on Bve hold,
we have σ ∈ L∞(0, T ;Q). Taking v = u(t)±ϕ in (8.1.13), where ϕ ∈ C∞

0 (Ω)d

is arbitrary, and using the definition (8.1.10) for F(t) we find

Div σ(t) + fB(t) = 0 a.e. t ∈ (0, T ). (8.2.6)

The regularity assumption (8.1.8) on fB implies Div σ ∈ L∞(0, T ;L2(Ω)d),
and thus σ ∈ L∞(0, T ;Q1).

A pair of functions (u,σ) which satisfies (8.1.1), (8.1.13) and (8.1.14) is
called a weak solution of the problem Pve−S . We conclude from Theorem
8.1.1 that problem Pve−S has a unique weak solution.

8.3 Frictional Contact with Normal Compliance

We now describe the problem with normal compliance and friction. The first
existence and uniqueness result for quasistatic frictional contact with normal
compliance between a reactive foundation and a viscoelastic body has been
established in [20]. Related and additional results for these problems can be
found in [209–211]. This is the representative problem described in detail in
Chap. 5. Here the presentation is condensed, as in the rest of Part II.

The classical formulation of the mechanical problem is as follows.

Problem Pve−nc. Find a displacements field u : Ω× [0, T ] → R
d and a stress

field σ : Ω × [0, T ] → S
d such that

σ = Aveε(u̇) + Bveε(u) in ΩT , (8.3.1)
Div σ + fB = 0 in ΩT , (8.3.2)

u = 0 on ΓD × (0, T ), (8.3.3)
σn = fN on ΓN × (0, T ), (8.3.4)

−σn = pn(un − g),
‖στ‖ ≤ pτ (un − g),

στ = −pτ (un − g)
u̇τ

‖u̇τ‖
if u̇τ �= 0




on ΓC × (0, T ), (8.3.5)

u(0) = u0 in Ω. (8.3.6)

An example of the normal compliance function pn is

pn(r) = cnr+, (8.3.7)
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or, more generally, pn(r) = cn(r+)m, where cn is a positive constant and
m ≥ 1. Formally, Signorini’s nonpenetration condition is obtained in the limit
cn → ∞. This leads to the idea of regarding the contact with a rigid support
as a limiting case of contact with a deformable support whose stiffness, or
resistance to compression grows. We may also consider the normal compliance
function

pn(r) =
{
cn(r+)m if r ≤ r∗

cnr
∗∗ if r > r∗, (8.3.8)

where r∗ is a positive cut-off limit, related to the hardness of the surface, m
is a positive integer and r∗∗ = (r∗)m. This allows us to consider the normal
compliance condition with higher differentiability at the onset of contact, i.e.,
at zero, while the function is Lipschitz on R. In this case the contact condition
means that when the asperity interpenetration is large, i.e., when it exceeds
the depth r∗, the obstacle offers no additional resistance to the penetration.
Practically, this cut-off does not pose any limitation on the use of such a
condition, since its purpose is mathematical, and one can always choose r∗

to be larger than the dimensions of the system under consideration.
We turn to the variational formulation of problem (8.3.1) – (8.3.6). First,

we assume that the viscosity operator Ave and the elasticity operator Bve
satisfy conditions (6.4.4) and (6.4.5), respectively. The normal and tangential
compliance functions pe (e = n, τ) satisfy

(a) pe : ΓC × R → R+.

(b) There exists Le > 0 such that
|pe(x, u1) − pe(x, u2)| ≤ Le |u1 − u2|,
∀u1, u2 ∈ R, a.e. x ∈ Ω.

(c) For any u ∈ R, x �→ pe(x, u) is measurable on ΓC .

(d) The mapping x �→ pe(x, 0) ∈ L2(ΓC).




(8.3.9)

We observe that the assumptions on the functions pn and pτ are quite
general, with the exception of (8.3.9)(b) which requires the functions to grow
asymptotically at most linearly. From the practical point of view this is an
insignificant restriction, since the interpenetration is likely to be very small.
It is easily seen that the functions defined in (8.3.7) and (8.3.8) satisfy the
condition (8.3.9)(b). Also, to conform to the usual practice, we may write
pτ = µpn or pτ = µpn(1−δpn)+, (see page 22 for details), and we notice that
if pn satisfies the condition (8.3.9)(b), then pτ also satisfies the condition
(8.3.9)(b) with Lτ = µLn. So the results below are valid for the bound-
ary value problems associated with these choices of the normal compliance
functions.

We assume that the force and traction densities satisfy

fB ∈ C([0, T ];L2(Ω)d), fN ∈ C([0, T ];L2(ΓN )d), (8.3.10)

and the gap function satisfies
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g ∈ L2(ΓC), g ≥ 0 a.e. on ΓC . (8.3.11)

Finally, the initial displacements fulfill,

u0 ∈ V. (8.3.12)

We use the space V , (6.2.3), with the inner product (6.2.5), and denote
by F(t) the element of V given by

(F(t),v)V =
∫
Ω

fB(t) · v dx+
∫
ΓN

fN (t) · v dS, (8.3.13)

for all v ∈ V and t ∈ [0, T ].
Let j : V × V → R be the contact functional

j(v,w) =
∫
ΓC

pn(vn − g)wn dS +
∫
ΓC

pτ (vn − g) ‖wτ‖ dS (8.3.14)

for all v,w ∈ V . From assumption (8.3.9) it follows that the integrals in
(8.3.14) are well defined.

If (u,σ) are smooth functions satisfying (8.3.2)–(8.3.5), then u(t) ∈ V
and

(σ(t), ε(v) − ε(u̇(t)))Q + j(u(t),v) − j(u(t), u̇(t))

≥ (F(t),v − u̇(t))V ∀v ∈ V, (8.3.15)

for all t ∈ [0, T ]. A detailed derivation of this inequality can be found in
Chap. 5.

The following is a variational formulation of the problem Pve−nc, given in
terms of the displacements.

Problem PVve−nc. Find a displacement function u : [0, T ] → V such that

(Aveε(u̇(t)), ε(v) − ε(u̇(t)))Q + (Bveε(u(t)), ε(v) − ε(u̇(t)))Q + j(u(t),v)

−j(u(t), u̇(t)) ≥ (F(t),v − u̇(t))V ∀v ∈ V, t ∈ [0, T ], (8.3.16)

u(0) = u0. (8.3.17)

The existence of the unique solution of Problem PVve−nc is guaranteed in
the followinf result.
Theorem 8.3.1. Assume that (6.4.4), (6.4.5) and (8.3.9)–(8.3.12) hold. Then
Problem PVve−nc has a unique solution u ∈ C1([0, T ];V ).
A proof of the theorem that was based on results for elliptic variational in-
equalities and fixed point arguments can be found in [20]. A new and different
proof, based on an abstract existence and uniqueness result, is presented in
the next section.

We say that a pair of functions (u,σ), which satisfies (8.3.1), (8.3.16) and
(8.3.17), is a weak solution of problem Pve−nc. Let now u ∈ C1([0, T ];V ) be
the solution of Problem PVve−nc and let σ be the stress field defined by (8.3.1),
then we conclude from the theorem that problem Pve−nc has a unique weak
solution, and moreover, σ ∈ C([0, T ];Q1).
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8.4 Proof of Theorem 8.3.1

We provide a proof of Theorem 8.3.1, which is different from the one in [20].
To that end we need the following abstract result for evolutionary variational
inequalities.

Let X be a real Hilbert space with inner product (·, ·)X and the associated
norm || · ||X , and consider the problem of finding u : [0, T ] → X such that

(Au̇(t), v − u̇(t))X + (Bu(t), v − u̇(t))X + j(u(t), v) (8.4.1)
−j(u(t), u̇(t)) ≥ (f(t), v − u̇(t))X ∀ v ∈ X, t ∈ [0, T ],

u(0) = u0. (8.4.2)

Here, A and B are nonlinear operators on X, j is a functional defined on
X ×X, while f and u0 are given data.

In the study of problem (8.4.1)–(8.4.2) we need the following assumptions.
The operator A : X → X is Lipschitz continuous and strongly monotone, i.e.,

(a) There exists MA > 0 such that
‖Au1 −Au2‖X ≤ MA ‖u1 − u2‖X ∀u1, u2 ∈ X.

(a) There exists mA > 0 such that
(Au1 −Au2, u1 − u2)X ≥ mA‖u1 − u2‖2

X ∀u1, u2 ∈ X.




(8.4.3)

The nonlinear operator B : X → X is Lipschitz continuous, i.e. there exists
MB > 0 such that

‖Bu1 −Bu2‖X ≤ MB ‖u1 − u2‖X ∀u1, u2 ∈ X. (8.4.4)

The functional j : X ×X → R satisfies

(a) j(u, ·) is convex and l.s.c. on X, for all u ∈ X,

(b) There exists α > 0 such that
j(u1, v2) − j(u1, v1) + j(u2, v1) − j(u2, v2)

≤ α ‖u1 − u2‖X ‖v1 − v2‖X ∀u1, u2, v1, v2 ∈ X.




(8.4.5)

Finally, we assume that
f ∈ C([0, T ];X) (8.4.6)

and
u0 ∈ X. (8.4.7)

The following existence and uniqueness result was proved in [211] and
may be also found in [51, p. 230].

Theorem 8.4.1. Let (8.4.3)–(8.4.7) hold. Then, there exists a unique solu-
tion u ∈ C1([0, T ];X) of problem (8.4.1)–(8.4.2).

We use Theorem 8.4.1 to prove Theorem 8.3.1.
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Proof (Theorem 8.3.1). We choose the space X = V equipped with the inner
product (·, ·)V and norm ‖ · ‖V . We use the Riesz Representation Theorem
to define the operators A : V → V and B : V → V by

(Au,v)V = (Aveε(u), ε(v))Q, (Bu,v)V = (Bveε(u), ε(v))Q,

for all u, v ∈ V . It follows from assumptions (6.4.4) on Ave and (6.4.5) on Bve
that the operators A and B satisfy conditions (8.4.3) and (8.4.4), respectively.
Next, combining the assumptions (8.3.9) on pn and pτ with the inequality
(6.2.9) it follows that the functional j, defined by (8.3.14), satisfies (8.4.5),
since

j(u1,v2) − j(u2,v1) + j(u2,v1) − j(u2,v2)
≤ c2B(Ln + Lτ )‖u1 − u2‖V ‖v1 − v2‖V ,

for all u1, u2, v1,v2 ∈ V . Also, (8.3.10) implies that the function F, de-
fined by (8.3.13), satisfies F ∈ C([0, T ], V ) and, finally, (8.3.12) shows that
condition (8.4.7) is satisfied, too. By applying now Theorem 8.4.1 we obtain
that there exists a unique function u ∈ C1([0, T ];V ) such that (8.3.16) and
(8.3.17) holds, which concludes the proof. �

8.5 Bilateral Frictional Contact

We consider, following [212], the mechanical problem describing bilateral fric-
tional contact between a viscoelastic body and a rigid foundation. We recall
that by ‘bilateral’ we mean that the body is permanently in contact with
the foundation and there is no gap, so that g = 0. As was noted above,
such settings can be found in many engineering applications where the rela-
tive motion of machine parts is such that contact must be maintained at all
times.

The friction condition is assumed to be nonlocal in order to make the
contact pressure meaningful, indeed, its value at a point has to be regularized
by averaging it over a small nominal contact area. We comment on this
requirement below. Such nonlocal friction laws were used in [9,17,22,48,213]
in the static and quasistatic cases, and the interested reader will find further
details there.

The model for the process is as follows.

Problem Pve−b. Find a displacement field u : Ω × [0, T ] → R
d and a stress

field σ : Ω × [0, T ] → S
d such that

σ = Aveε(u̇) + Bveε(u) in ΩT , (8.5.1)
Div σ + fB = 0 in ΩT , (8.5.2)

u = 0 on ΓD × (0, T ), (8.5.3)
σn = fN on ΓN × (0, T ), (8.5.4)
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un = 0,
‖στ‖ ≤ µ p(|Rσn|),

στ = −µp(|Rσn|)
u̇τ

‖u̇τ‖
if u̇τ �= 0




on ΓC × (0, T ), (8.5.5)

u(0) = u0 in Ω. (8.5.6)

Conditions (8.5.5) describe a frictional bilateral contact process. Here, µ is
the friction coefficient and R : H− 1

2 (Γ ) → L2(Γ ) is a continuous regular-
izing operator representing the averaging of the normal stress over a small
neighborhood of the contact point. We address this issue shortly.

In the case where p is a known function which is independent of σn, i.e.,
p(r) = h, the friction law involved in (8.5.5) becomes the Tresca friction law,
and H = µh is the friction bound. By choosing p(r) = r in (8.5.5), we recover
the usual regularized Coulomb friction law used in the literature. The choice
p(r) = r+ (1−δ r)+, where δ is a small positive coefficient related to the wear
and hardness of the surface, (2.6.11), was employed in [97].

Problem Pve−b has been investigated in [22], in the case p(r) = r, and the
existence of the unique weak solution to the model was established. There,
only the primal formulation of the problem, in terms of displacements, has
been considered.

The inclusion of the regularizing operator R can be traced to [17,213]. As
explained in [17], there seems to be some physical justification in considering
the normal stress in the friction condition (8.5.5) as averaged over a small
surface area which contains many asperities. However, the main motivation
for such a choice is mathematical, to avoid otherwise insurmountable difficul-
ties. Indeed, in the weak formulation the stress σ is only square-integrable
over Ω and, therefore, its values or trace on the contact surface are not well
defined mathematical functions. To overcome this difficulty the operator R
has been introduced in [213]. As an example of such an operator one may use
the convolution of σ with an infinitely differentiable function with support
in a small ball.

We assume that R : H− 1
2 (Γ ) → L2(Γ ) is a continuous operator. Using

the continuity of R and of the normal trace mapping, we deduce the existence
of a constant cR > 0, depending only on Ω, ΓD, ΓC and R such that

‖Rξn‖L2(ΓC) ≤ cR ‖ξ‖Q1 ∀ ξ ∈ Q1. (8.5.7)

In the study of the mechanical problem (8.5.1)–(8.5.6) we assume that
the viscosity operator Ave and the elasticity operator Bve satisfy conditions
(6.4.4) and (6.4.5), respectively. The assumptions on the friction function p
are:
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(a) p : ΓC × R → R+.

(b) There exists Lp > 0 such that

|p(x, u1) − p(x, u2)| ≤ Lp |u1 − u2|
∀u1, u2 ∈ R, a.e. x ∈ ΓC .

(c) For each u ∈ R, x �→ p(x, u) is measurable on ΓC .

(d) The mapping x �→ p(x, 0) ∈ L2(ΓC).




(8.5.8)

We observe that the assumptions (8.5.8) on p are quite general. Clearly,
the functions p(r) = h, p(r) = r and p(r) = r+ (1 − δ r)+ satisfy these con-
ditions, when h and δ are given positive constants. So, the results presented
below hold true for the boundary value problems with each one of these
tangential functions.

We assume that the force and traction densities belong to the spaces

fB ∈ C([0, T ];L2(Ω)d), fN ∈ C([0, T ];L2(ΓN )d), (8.5.9)

and the coefficient of friction µ satisfies

µ ∈ L∞(Ω), µ ≥ 0 a.e. on ΓC . (8.5.10)

Finally, we assume
u0 ∈ V1. (8.5.11)

Recall that the space V1, defined in (6.2.7), is a real Hilbert space when
equipped with the inner product (6.2.5).

Let F(t) denote the element of V1 given by (7.3.11), and let j : Q1×V1 → R

be the friction functional

j(τ ,v) =
∫
ΓC

µ p(|Rτn|) ‖vτ‖ dS ∀τ ∈ Q1, v ∈ V1. (8.5.12)

Since Rσn lies in L2(Γ ), it follows from assumptions (8.5.8) and (8.5.10) that
the integral in (8.5.12) is well defined on Q1 × V1. Next, for t ∈ [0, T ] and
τ ∈ Q1, we introduce the set

Σ(t, τ ) = { ξ ∈ Q : (ξ, ε(v))Q + j(τ ,v) ≥ (F(t),v)V ∀v ∈ V1 }.

It is straightforward to show that if u and σ are sufficiently regular functions
satisfying (8.5.2)–(8.5.5), then for all t ∈ [0, T ],

u(t) ∈ V1, σ(t) ∈ Σ(t,σ(t)), (8.5.13)

(σ(t), ε(v) − ε(u̇(t)))Q + j(σ(t),v) − j(σ(t), u̇(t))

≥ (F(t),v − u̇(t))V ∀v ∈ V1, (8.5.14)

(τ − σ(t), ε(u(t)))Q ≥ 0 ∀ τ ∈ Σ(t,σ(t)). (8.5.15)
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From (8.5.1), (8.5.6), (8.5.13)–(8.5.15) we obtain the following two varia-
tional formulations of problem (8.5.1)–(8.5.6).

Problem PVve−b1 Find a displacement field u : [0, T ] → V1 and a stress field
σ : [0, T ] → Q1 such that

u(0) = u0 (8.5.16)

and for every t ∈ [0, T ],

σ(t) = Aveε(u̇(t)) + Bveε(u(t)), (8.5.17)

(σ(t), ε(v) − ε(u̇(t)))Q + j(σ(t),v) − j(σ(t), u̇(t))
≥ (F(t),v − u̇(t))V ∀v ∈ V1. (8.5.18)

Problem PVve−b2. Find a displacement field u : [0, T ] → V1 and a stress field

σ : [0, T ] → Q1 such that
u(0) = u0 (8.5.19)

and for every t ∈ [0, T ],

σ(t) = Aveε(u̇(t)) + Bveε(u(t)), (8.5.20)

σ(t) ∈ Σ(t,σ(t)), (τ − σ(t), ε(u̇(t)))Q ≥ 0 ∀ τ ∈ Σ(t,σ(t)). (8.5.21)

Whereas in problem PVve−b1 the main role is played by the displacements
field, in problem PVve−b2, the so-called dual formulation, the main role is played
by the stress field. The importance of dual problems in mechanics lies in the
fact that in most applications finding the stresses in the system, especially
the contact stresses, is more important than obtaining the displacements.

We note in passing that (8.5.20) and (8.5.21) is a quasi-variational in-
equality since the set of admissible test functions Σ depends on the solution.

We have the following result for Problem PVve−b1.

Theorem 8.5.1. Assume (6.4.4), (6.4.5) and (8.5.8)–(8.5.11). Then, there
exists µ0 > 0, which depends only on Ω,ΓD, ΓC ,Ave, p, and R, such that
Problem PVve−b1 has a unique solution (u,σ) when ‖µ‖L∞(ΓC) < µ0. More-
over, the solution satisfies

u ∈ C1([0, T ];V1), σ ∈ C([0, T ];Q1). (8.5.22)

We note that in this case there is a restriction on the size of the friction
coefficient, which is usually found in results for static and quasistatic friction
problems involving Coulomb’s law and elastic materials.

Proof. The proof of the theorem is carried out in four steps which we outline
below.
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(i) Let η ∈ C([0, T ];Q) be a given function, which is the elastic stress,
and let ξ ∈ C([0, T ];Q1) be a given contact stress. Then, it follows from
Theorem 6.3.2 that there exists a unique solution

vηξ ∈ C([0, T ];V1), σηξ ∈ C([0, T ];Q1),

of the following variational problem,

σηξ(t) = Aveε(vηξ(t)) + η(t),

(σηξ(t), ε(v) − ε(vηξ(t)))Q + j(ξ(t), v) − j(ξ(t),vηξ(t))
≥ (F(t),v − vηξ(t))V ∀v ∈ V1,

for all t ∈ [0, T ].
Thus, if we input the elastic stress and the contact stress, then we obtain

the unique velocity and stress fields.
(ii) Next, we construct an operator that associates with a given contact

stress ξ the body stress σηξ which is provided by the previous step, when η
is given. Let

µ0 =
mA

LALpcRcB
,

where mA, LA, Lp, cR, and cB are the constants found in the assumptions
(6.4.4), (8.5.7), (8.5.8), and (6.2.9). Then the operator Λη : C([0, T ];Q1) →
C([0, T ];Q1) defined by

Ληξ = σηξ ∀ ξ ∈ C([0, T ];Q1),

has a unique fixed point ξη, when ‖µ‖L∞(ΓC) < µ0.
(iii) We construct another operator which relates to each given η the

corresponding strain ε(uη).
When ‖µ‖L∞(ΓC) < µ0 the operator Λ : C([0, T ];Q) → C([0, T ];Q),

defined by

Λη(t) = Bveε(uη(t)), uη(t) =
∫ t

0
vηξη (s) ds+ u0,

for all η ∈ C([0, T ];Q) and t ∈ [0, T ], has a unique fixed point η∗ ∈
C([0, T ];Q).

(iv) Finally, the fixed point thus obtained provides the unique solution of
the problem. Let ‖µ‖L∞(ΓC) < µ0, then (u,σ), with u = uη∗ and σ = ση∗ξη∗

is the unique solution of Problem PVnc−b1 satisfying (8.5.22). �

The next result deals with the relationship between the two formulations
and shows that Problems PVve−b1 and PVve−b2 are equivalent.

Theorem 8.5.2. Let conditions (6.4.4), (6.4.5), and (8.5.8)–(8.5.11) hold,
and assume that (u,σ) satisfies (8.5.22). Then (u,σ) is a solution of Problem
PVve−b1 if and only if it is a solution of Problem PVve−b2.
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The following result is a consequence of Theorems 8.5.1 and 8.5.2.

Theorem 8.5.3. Let conditions (6.4.4), (6.4.5), and (8.5.8)–(8.5.11) hold,
and let µ0 be defined as in Theorem 8.5.1. Then, if ‖µ‖L∞(ΓC) < µ0, Problem
PVve−b2 has a unique solution (u,σ) which satisfies (8.5.22).

Since, by Theorem 8.5.2, the problems are equivalent Theorems 8.5.1 and
8.5.3 provide the existence and uniqueness of the (same) solution for Problems
PVve−b1 and PVve−b2.

We conclude from Theorems 8.5.1 and 8.5.3 that if the coefficient of fric-
tion is sufficiently small the mechanical problem has a unique weak solution
which satisfies both Problems PVve−b1 and PVve−b2.

More detailed study of problem (8.5.1)–(8.5.6), including the continuous
dependence of the weak solution on the data and on the coefficient of friction,
may be found in [212].

8.6 Frictional Contact with Normal Damped Response

We turn to viscoelastic frictional contact when the foundation’s reaction de-
pends on the normal velocity. We model it with a general normal damped
response condition and the associated version of dry friction law.

The classical formulation of the mechanical problem is as follows.

Problem Pve−d. Find a displacement u : Ω × [0, T ] → R
d and a stress field

σ : Ω × [0, T ] → S
d such that

σ = Aveε(u̇) + Bveε(u) in ΩT , (8.6.1)
Div σ + fB = 0 in ΩT , (8.6.2)

u = 0 on ΓD × (0, T ), (8.6.3)
σn = fN on ΓN × (0, T ), (8.6.4)

−σn = pn(u̇n),
‖στ‖ ≤ pτ (u̇n),

στ = −pτ (u̇n)
u̇τ

‖u̇τ‖
if u̇τ �= 0




on ΓC × (0, T ), (8.6.5)

u(0) = u0 in Ω. (8.6.6)

We comment on the frictional contact conditions (8.6.5). In [90] the fol-
lowing form of the function pn has been employed

pn(r) = γd r+ + p0, (8.6.7)

modelling a foundation that is covered with a thin lubricant layer, say oil.
Here, γd is the damping resistance coefficient, assumed positive, and p0 is
the oil pressure, which is given and nonnegative. In this case the lubricant
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layer presents resistance, or damping, only when the surface moves towards
the foundation, but does nothing when it recedes.

Another choice of pn is a power law,

pn(r) = κ |r|q−1r. (8.6.8)

Here, κ ≥ 0, 0 < q ≤ 1 and the normal contact pressure depends on a power
of the normal velocity, which is similar to the behavior of a nonlinear viscous
dashpot.

Finally, we may choose
pn(r) = SC , (8.6.9)

where SC is a given positive function. In this case the normal stress is pre-
scribed on the contact surface.

Given pn, we may choose the friction bound function pτ in a number of
ways, such as

pτ = µpn (8.6.10)

or
pτ = µpn(1 − δpn)+, (8.6.11)

where µ and δ are positive coefficients (see page 22 for details).
In the study of the mechanical problem (8.6.1)–(8.6.6) we use assumptions

(6.4.4) and (6.4.5). We also assume that the contact functions pe (e = n, τ)
satisfy

(a) pe : ΓC × R → R+.

(b) There exists Le > 0 such that
|pe(x, r1) − pe(x, r2)| ≤ Le |r1 − r2|
∀ r1, r2 ∈ R, a.e. x ∈ ΓC .

(c) For any r ∈ R, x �→ pe(x, r) is measurable on ΓC .

(d) The mapping x �→ pe(x, 0) ∈ L2(ΓC).




(8.6.12)

We note that assumptions (8.6.12) on the functions pn and pτ are quite
general, with the exception assumption (b). The functions defined in (8.6.7)
and (8.6.9) satisfy the condition (8.6.12)(b) and the function defined in (8.6.8)
satisfies this condition if q = 1. We also observe that when the functions
pn and pτ are related by (8.6.10) or (8.6.11) and pn satisfies the condition
(8.6.12)(b), then pτ also satisfies condition (8.6.12)(b) with Lτ = µLn. We
conclude that the results below are valid for the boundary value problems
with these choices of contact functions.

We assume that the forces and tractions satisfy

fB ∈ C([0, T ];L2(Ω)d), fN ∈ C([0, T ];L2(Γ2)d), (8.6.13)

and the initial displacements satisfy
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u0 ∈ V, (8.6.14)

where the space V is defined in (6.2.3). We denote by F(t) the element of V
given by (8.3.13), and let j : V × V → R be the contact functional defined
by

j(v,w) =
∫
ΓC

pn(vn)wn dS +
∫
ΓC

pτ (vn) ‖wτ‖ dS ∀v, w ∈ V. (8.6.15)

It follows now from the Green formula (6.2.11) that if (u,σ) are smooth
functions satisfying (8.6.2)–(8.6.5), then u(t) ∈ V and for all t ∈ [0, T ],

(σ(t), ε(v) − ε(u̇(t)))Q + j(u̇(t),v) − j(u̇(t), u̇(t))

≥ (F(t),v − u̇(t))V ∀v ∈ V. (8.6.16)

Thus, we obtain from (8.6.1), (8.6.6) and (8.6.16) the following variational
formulation of problem (8.6.1)–(8.6.6) in terms of the displacements.

Problem PVve−d. Find a displacement field u : [0, T ] → V such that

(Aveε(u̇(t)), ε(v) − ε(u̇(t)))Q + (Bveε(u(t)), ε(v) − ε(u̇(t)))Q + j(u̇(t),v)

− j(u̇(t), u̇(t)) ≥ (F(t),v − u̇(t))V ∀v ∈ V, t ∈ [0, T ], (8.6.17)

u(0) = u0. (8.6.18)

The existence and uniqueness of the solution to Problem PVve−d is de-
scribed in the following result of [179], and it holds when a smallness as-
sumption on a part of the data is satisfied.

Theorem 8.6.1. Assume (6.4.4), (6.4.5), and (8.6.12)–(8.6.14). There exists
L0 > 0, which depends only on Ω, ΓD, ΓC and Ave, such that if Ln+Lτ ≤ L0,
then Problem PVve−d has a unique solution u ∈ C1([0, T ];V ).

Let now u ∈ C1([0, T ];V ) be the solution of Problem PVve−d and let σ
be the stress field given by (8.6.1). It follows from (6.4.4) and (6.4.5) that
σ ∈ C([0, T ];Q). Moreover, using (8.6.17) and (8.6.13) it can be shown that
Div σ ∈ C([0, T ];L2(Ω)d) and then σ ∈ C([0, T ];Q1).

A pair of functions (u,σ) which satisfies (8.6.1), (8.6.17) and (8.6.18) is
called a weak solution of problem (8.6.1)–(8.6.6). We conclude that problem
(8.6.1)–(8.6.6) has a unique weak solution provided Ln + Lτ is sufficiently
small. The critical value L0 depends only on the viscosity operator and on
the geometry of the problem, and is independent of the elasticity operator,
the external forces, or the initial displacements.

We now discuss possible mechanical interpretations of the restriction
Ln + Lτ < L0, which guarantees the unique solvability of the problem. The
verification of this condition as well as its interpretation depend on the spe-
cific mechanical problem under consideration. For example, consider problem
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(8.6.1)–(8.6.6), in which the function pn is given by (8.6.7) and the func-
tion pτ is given by (8.6.10) or by (8.6.11). Then, it follows that assumption
(8.6.12)(b) is satisfied with Ln = γd and Lτ = µγd and, therefore, the con-
dition Ln + Lτ ≤ L0 holds if γd ≤ L0/(µ+ 1). Thus, the condition imposes
a size restriction on the damping resistance coefficient. We conclude that the
corresponding mechanical problem has a unique weak solution if the damping
resistance coefficient of the oil layer is sufficiently small. Next, consider the
mechanical problem (8.6.1)–(8.6.6) when the function pn is given by (8.6.9)
with SC ∈ L∞(ΓC) and the function pτ is given by (8.6.10) or by (8.6.11).
Assumption (8.6.12)(b) is satisfied with Ln = Lτ = 0 and, therefore, the
condition Ln + Lτ ≤ L0 holds trivially. We conclude that the correspond-
ing mechanical problem has a unique weak solution without any additional
restriction on the coefficients µ or δ.

We note that the frictional contact problem with damped response for
elastic materials, i.e., problem (7.1.1), (8.6.2)–(8.6.6), seems to be an open
problem. Indeed, removing the viscosity operator Ave in the variational in-
equality (8.6.17) leads to severe mathematical difficulties and, as far as we
know, there are no existence results for such models. A similar comment ap-
plies to the frictional contact problem with damped response for viscoplastic
materials, i.e., problem (9.1.1), (9.1.6), (8.6.2)–(8.6.5).
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We describe contact problems for viscoplastic materials in which once the
stress reaches the so-called yield limit the deformation becomes irreversible.
Metals behave as viscoplastic materials, for instance, during metal-forming,
and so do some polymers and other materials when hot or under large loads.
Such problems are common in industrial processes and deserve considerable
attention, both analytical and computational. We use rate-type constitutive
laws of the form (6.4.7), and note that unlike the elastic or viscoelastic cases,
the variational formulations of viscoplastic contact problems involve both the
displacements and the stress fields. Indeed, this feature arises from the fact
that, essentially, the stress field can not be eliminated from the constitutive
law and, therefore, derivation of a variational formulation in terms of the
displacements only leads to considerable mathematical difficulties.

Throughout this chapter and we assume that conditions (6.4.8) and (6.4.9)
hold.

In Sect. 9.1 the frictionless contact problem with the Signorini condition
is presented. Two mixed variational formulations are given and the existence
of the unique weak solution to each one is stated. The main steps in the
proofs are provided, as an example of the general method. A detailed proof
of the equivalence between the two variational formulations can be found in
Sect. 9.2.

Section 9.3 deals with recent results for the viscoplastic contact problem
with normal compliance and friction. The existence of a weak solution is
stated, under the condition that some of the problem data is small, in an
appropriate sense. The proof is provided in Sect. 9.4.

The bilateral problem, when contact is maintained at all times, is de-
scribed in Sect. 9.5. Two different mixed variational formulations are pro-
vided, the existence of the unique weak solution stated, and the main steps
in the proofs described.

The chapter concludes with Sect. 9.6 where existence and uniqueness re-
sults are provided for a general dissipative contact functional which depends
on the velocities.

We would like to emphasize here that the steps in the proofs, which use
fixed-point arguments, provide a way to develop reliable numerical algorithms
for such problems.

M. Shillor, M. Sofonea, J.J. Telega: Models and Analysis of Quasistatic Contact, Lect. Notes
Phys. 655, (2001), 135–162
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004
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9.1 Frictionless Contact with Signorini’s Condition

We assume that contact is frictionless and model it with the Signorini condi-
tion, and zero gap function (g = 0). The viscoplastic constitutive law of the
material is chosen as (6.4.7), and we follow [28] in the presentation below.
Under these assumptions the classical formulation of the mechanical problem
is the following.

Problem Pvp−S . Find a displacement field u : Ω × [0, T ] → R
d and a stress

field σ : Ω × [0, T ] → S
d such that

σ̇ = Avpε(u̇) + Gvp(σ, ε(u)) in ΩT , (9.1.1)
Div σ + fB = 0 in ΩT , (9.1.2)

u = 0 on ΓD × (0, T ), (9.1.3)
σn = fN on ΓN × (0, T ), (9.1.4)

un ≤ 0, σn ≤ 0, σnun = 0, στ = 0 on ΓC × (0, T ), (9.1.5)
u(0) = u0, σ(0) = σ0 in Ω. (9.1.6)

Here, u0 and σ0 are the initial displacement and stress fields, respec-
tively. These have to be provided because of the time derivatives of u and σ
in (9.1.1). Physically, these are needed since in viscoplastic materials speci-
fying only the displacements does not determine uniquely the stresses, and
therefore, the state of the system.

We assume that the force and traction densities satisfy

fB ∈ W 1,∞(0, T ;L2(Ω)d), fN ∈ W 1,∞(0, T ;L2(ΓN )d) (9.1.7)

and we denote by F(t) the element of V given by

(F(t),v)V =
∫
Ω

fB(t) · v dx+
∫
ΓN

fN · v dS, (9.1.8)

for all v ∈ V and t ∈ [0, T ]. Conditions (9.1.7) imply

F ∈ W 1,∞(0, T ;V ). (9.1.9)

Next, we choose the set of admissible displacement fields to be V2, (6.2.8),
and the time dependent set of admissible stress fields Σ(t) is given by

Σ(t) = {τ ∈ Q : (τ , ε(v))Q ≥ (F(t),v)V ∀v ∈ V2}, t ∈ [0, T ]. (9.1.10)

This is the set of all stresses that are compatible with the forces F(t) over
[0, T ]. Finally, we assume that the initial data satisfy

u0 ∈ V2, σ0 ∈ Σ(0), (σ0, ε(u0))Q = (F(0),u0)V . (9.1.11)

The last condition is a compatibility condition on the initial data that is
necessary in many quasistatic problems. Physically, it is needed so as to
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guarantee that initially the state is in equilibrium, since otherwise the inertial
terms cannot be neglected and the problem becomes dynamic.

It can be shown that if u and σ are smooth functions which satisfy (9.1.2)–
(9.1.5), then

u(t) ∈ V2, (σ(t), ε(v) − ε(u(t)))Q ≥ (F(t),v − u(t))V ∀v ∈ V2, (9.1.12)

σ(t) ∈ Σ(t), (τ − σ(t), ε(u(t)))Q ≥ 0 ∀ τ ∈ Σ(t), (9.1.13)

for all t ∈ [0, T ].
These inequalities lead to the following two mixed weak formulations of

problem (9.1.1)–(9.1.6).

Problem PVvp−S1. Find a displacement field u : [0, T ] → V and a stress field
σ : [0, T ] → Q1 such that

σ̇(t) = Avpε(u̇(t)) + G(σ(t), ε(u(t))) a.e. t ∈ (0, T ), (9.1.14)

u(t) ∈ V2, (σ(t), ε(v) − ε(u(t)))Q ≥ (F(t), v − u(t))V
∀v ∈ V2, t ∈ [0, T ], (9.1.15)

u(0) = u0, σ(0) = σ0. (9.1.16)

Problem PVvp−S2. Find a displacement field u : [0, T ] → V and a stress field
σ : [0, T ] → Q1 such that

σ̇(t) = Avpε(u̇(t)) + G(σ(t), ε(u(t))) a.e. t ∈ (0, T ), (9.1.17)

σ(t) ∈ Σ(t), (τ − σ(t), ε(u(t)))Q ≥ 0 ∀ τ ∈ Σ(t), t ∈ [0, T ], (9.1.18)

u(0) = u0, σ(0) = σ0. (9.1.19)

We note that Problems PVvp−S1 and PVvp−S2 are, formally, equivalent to
the mechanical problem (9.1.1)–(9.1.6). Indeed, if (u,σ) represents a smooth
solution of either one of the variational problems PVvp−S1 or PVvp−S2, then it
follows by using arguments as in [5] (see also Chap. 5), that the pair (u,σ)
satisfies (9.1.1)–(9.1.6).

We turn to the existence of solutions for Problems PVvp−S1 and PVvp−S2.
We start with Problem PVvp−S1 which was studied in [28].

Theorem 9.1.1. Assume (6.4.8), (6.4.9), (9.1.7), and (9.1.11). Then there
exists a unique solution (u,σ) of Problem PVvp−S1, and it satisfies

u ∈ W 1,∞(0, T ;V ), σ ∈ W 1,∞(0, T ;Q1). (9.1.20)

Proof. The proof of Theorem 9.1.1 is based on fixed point arguments, and
carried out in several steps which we describe below. The fixed point is related
to the plastic part of the problem.
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(i) Let η ∈ L∞(0, T ;Q) and define the function zη ∈ W 1,∞(0, T ;Q) by

zη(t) =
∫ t

0
η(s) ds+ σ0 − Avpε(u0). (9.1.21)

We prove, by using Corollary 6.3.3, that there exists a unique pair (uη,ση)
such that uη ∈ W 1,∞(0, T ;V ), ση ∈ W 1,2(0, T ;Q1) and

ση(t) = Avpε(uη(t)) + zη(t), (9.1.22)

uη(t) ∈ V2, (ση(t), ε(v) − ε(uη(t)))Q ≥ (F(t),v − uη(t))V ,
∀v ∈ V2, t ∈ [0, T ]. (9.1.23)

Moreover,
uη(0) = u0, ση(0) = σ0. (9.1.24)

(ii) We consider next the operator Λ : L∞(0, T ;Q) → L∞(0, T ;Q) defined
by

Λη = Gvp(ση, ε(uη)) ∀η ∈ L∞(0, T ;Q), (9.1.25)

where (uη,ση) is the solution of problem (9.1.22)–(9.1.23). Using Theorem
6.3.9 it follows that the operator Λ has a unique fixed point η∗ ∈ L∞(0, T ;Q).

(iii) Existence. Let η∗ ∈ L∞(0, T ;Q) be the fixed point of Λ, and let
(uη∗ ,ση∗) be the solution obtained in step (i) for η = η∗. Using (9.1.22) and
(9.1.21) we have

σ̇η∗(t) = Avpε(u̇η∗(t)) + η∗ a.e. t ∈ (0, T ).

Since

η∗(t) = Λη∗(t) = Gvp(ση∗(t), ε(uη∗(t))) ∀ t ∈ [0, T ],

it follows that (uη∗ ,ση∗) satisfies (9.1.14). Using now (9.1.23) and (9.1.24)
we conclude that (uη∗ ,ση∗) is a solution of Problem PVvp−S1 which satisfies
(9.1.20).

(iv) Uniqueness. Let (u,σ) be a solution of Problem PVvp−S1 which satisfies
(9.1.20) and let η ∈ L∞(0, T ;Q) be the function defined by

η(t) = Gvp(σ(t), ε(u(t))) ∀ t ∈ [0, T ]. (9.1.26)

Let zη be the function given in (9.1.21), then (u,σ) is a solution of problem
(9.1.22)–(9.1.23). By step (i) it follows that

u = uη, σ = ση. (9.1.27)

Using now (9.1.25)–(9.1.27) we deduce that Λη = η, and by the uniqueness
of the fixed point of Λ, we obtain

η = η∗. (9.1.28)

The uniqueness part in Theorem 9.1.1 is now a consequence of (9.1.27) and
(9.1.28). �
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We turn to an existence and uniqueness result for Problem PVvp−S2.

Theorem 9.1.2. Assume (6.4.8), (6.4.9), (9.1.7), and (9.1.11). Then there
exists a unique solution (u,σ) of Problem PVvp−S2, and it satisfies (9.1.20).

Proof. We observe first that the variational inequality (9.1.18) is defined over
the time-dependent convex setΣ(t). To convert it into a variational inequality
associated with a fixed convex set we change the variables. To that end we
introduce the notation

Σ0 = {τ ∈ Q : (τ , ε(v))Q ≥ 0 ∀v ∈ V2}, (9.1.29)

σ̃ = ε(F), (9.1.30)

σ̄ = σ − σ̃, σ̄0 = σ0 − σ̃(0), (9.1.31)

and consider the problem

ε(u̇(t)) = A−1
vp

˙̄σ(t) − A−1
vp Gvp(σ̄(t) + σ̃(t), ε(u(t)))

+A−1
vp

˙̃σ(t) a.e. t ∈ (0, T ), (9.1.32)

σ̄(t) ∈ Σ0, (τ − σ̄(t), ε(u(t)))Q ≥ 0 ∀ τ ∈ Σ0, ∀ t ∈ [0, T ], (9.1.33)

u(0) = u0 σ̄(0) = σ̄0, (9.1.34)

with the unknowns u : [0, T ] → V and σ̄ : [0, T ] → Q1. From (9.1.10) it
follows that

Σ(t) = Σ0 + {σ̃(t)}, (9.1.35)

for all t ∈ [0, T ], and using (9.1.7)–(9.1.9), we have

σ̃(t) ∈ W 1,∞(0, T ;Q1). (9.1.36)

Using (9.1.31)–(9.1.36) it is straightforward to show that the pair (u,σ)
is a solution of Problem PVvp−S2, and also u ∈ W 1,∞(0, T ;V ) and σ ∈
W 1,∞(0, T ;Q1) if and only if (u, σ̄) is a solution of problem (9.1.32)–(9.1.34)
and satisfies u ∈ W 1,∞(0, T ;V ) and σ̄ ∈ W 1,∞(0, T ;Q1).

We turn now to problem (9.1.32)–(9.1.34) and solve it by using, again, a
fixed point method. The proof proceeds in four steps, as follows.

(i) Let η ∈ L∞(0, T ;Q) and define zη ∈ W 1,∞(0, T ;Q) by

zη(t) =
∫ t

0
η(s) ds+ ε(u0) − A−1

vp σ0, t ∈ [0, T ]. (9.1.37)

Using Corollary 6.3.3 it follows that there exists a unique pair of functions
(uη,ση) such that uη ∈ W 1,∞(0, T ;V ), ση ∈ W 1,∞(0, T ;Q1), and

ε(uη(t)) = A−1
vp ση(t) + zη(t) + A−1

vp σ̃(t), (9.1.38)

ση(t) ∈ Σ0, (τ − ση(t), ε(uη(t)))Q ≥ 0 ∀ τ ∈ Σ0, (9.1.39)
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for all t ∈ [0, T ]. Moreover,

uη(0) = u0, ση(0) = σ̄0. (9.1.40)

(ii) We consider next the operator Λ : L∞(0, T ;Q) → L∞(0, T ;Q) defined
by

Λη = −A−1
vp G(ση + σ̃, ε(uη)), (9.1.41)

where, for η ∈ L∞(0, T ;Q), (uη,ση) is the solution of the variational problem
(9.1.38) and (9.1.39). Arguments similar to those used in the proof of Theorem
9.1.1 show that the operator Λ has a unique fixed point η∗ ∈ L∞(0, T ;Q).

(iii) Existence. Let η∗ ∈ L∞(0, T ;Q) be the fixed point of Λ and let
(uη∗ ,ση∗) be the solution obtained in step (i) for η = η∗. From (9.1.38)–
(9.1.41) it follows that (uη∗ ,ση∗) represents a solution of problem (9.1.32)–
(9.1.34) and, moreover, uη∗ ∈ W 1,∞(0, T ;V ) and ση∗ ∈ W 1,∞(0, T ;Q1). It
follows now that the pair (uη∗ ,ση∗ + σ̃) is a solution of Problem PVvp−S2 and
it satisfies (9.1.20).

(iv) Uniqueness. The uniqueness of the solution follows from the unique-
ness of the fixed point of the operator Λ. It can also be deduced directly from
(9.1.17)–(9.1.19) using (6.4.8), (6.4.9), and the Gronwall inequality. �

We next study the link between Problems PVvp−S1 and PVvp−S2, which
represent two different variational formulations of the mechanical problem
(9.1.1)–(9.1.6). We have the following equivalence result.

Theorem 9.1.3. Assume that conditions (6.4.8), (6.4.9), (9.1.7), and (9.1.11)
hold. Let u ∈ W 1,∞(0, T ;V ) and σ ∈ W 1,∞(0, T ;Q1). Then the pair (u,σ)
is the solution of PVvp−S1 if and only if it solves PVvp−S2.

The proof of the Theorem 9.1.3 can be found in the next section. It is
based on the properties of projection operators.

Theorems 9.1.1 and 9.1.2 guarantee the unique solvability of Problems
PVvp−S1 and PVvp−S1, respectively, while Theorem 9.1.3 expresses the equiv-
alence of these two problems. From these theorems we conclude that the
mechanical problem (9.1.1)–(9.1.6) has a unique weak solution which solves
both Problems PVvp−S1 and PVvp−S1.

A fixed point method, similar to the one used in the proof of Theorem
9.1.1, as well as in other results described in this monograph, was employed
in [214] in the study of a displacement-traction problem for viscoplastic ma-
terials with hardening, but without contact.

Error analysis for Problem PVvp−S1 was performed in [29, 215]. A non-
conforming finite element method was used in ( [216, 217]) to solve the fric-
tionless contact problems with viscoplastic materials of the form (6.4.7). An
extension of the results presented here to the study of viscoplastic materials
with internal state variable can be found in [218].

Variational analysis of the Signorini frictionless contact problem between
two viscoplastic bodies of the form (6.4.7) can be found in [30], where the
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existence of the unique weak solution was proved. Its numerical analysis,
including error estimates for discrete schemes, has been conducted in [31,219].
The problem of frictional contact between a viscoplastic body and a rigid
foundation, with the Signorini condition, was studied in [220], where the
existence of a weak solution was obtained, under a smallness assumption on
the coefficient of friction.

9.2 Proof of Theorem 9.1.3

We begin the proof by assuming that (u,σ) is a solution of the variational
Problem PVvp−S1. Let t ∈ [0, T ]. Choosing first v = 2u(t) ∈ V2 and then
v = 0 ∈ V2 in (9.1.15) yields

(σ(t), ε(u(t)))Q = (F(t),u(t))V . (9.2.1)

Using (9.1.15) and (9.2.1) we see that σ ∈ Σ(t). The inequality in (9.1.18)
follows now from (9.1.10) and (9.2.1). We conclude that (u,σ) is a solution
of Problem PVvp−S2.

Conversely, suppose that (u,σ) is a solution of Problem PVvp−S2. We first
show that u(t) ∈ V2 for all t ∈ [0, T ]. Arguing by contradiction, assume that
there exists t ∈ [0, T ] such that u(t) �∈ V2. Denote by Pu(t) the projection of
u(t) on the nonempty, closed, and convex set V2 ⊂ V . Using (6.3.1) we have

(Pu(t) − u(t),v)V ≥ (Pu(t) − u(t), Pu(t))V
> (Pu(t) − u(t),u(t))V ∀v ∈ V2.

Therefore, there exists α ∈ R such that

(Pu(t) − u(t),v)V > α > (Pu(t) − u(t), Pu(t))V ∀v ∈ V2. (9.2.2)

We denote by τ̃ (t) the element of Q given by τ̃ (t) = ε(Pu(t) − u(t)). Using
this and (9.2.2) yields

(τ̃ (t), ε(v))Q > α > (τ̃ (t), ε(u(t)))Q ∀v ∈ V2. (9.2.3)

Choosing v = 0 in (9.2.3) we deduce that

α < 0. (9.2.4)

Assume now that there exists w ∈ V2 such that

(τ̃ (t), ε(w))Q < 0. (9.2.5)

Since λw ∈ V2 for λ ≥ 0, it follows from (9.2.3) that

λ (τ̃ (t), ε(w))Q > α ∀λ ≥ 0.
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Passing to the limit λ → ∞ and using (9.2.5), we obtain that α ≤ −∞ which
contradicts the assumption α ∈ R. We conclude that

(τ̃ (t), ε(w))Q ≥ 0 ∀w ∈ V2,

which implies that τ̃ (t) ∈ Σ0 (see (9.1.29)). Using now (9.1.35) we deduce
that τ̃ (t) + σ̃(t) ∈ Σ(t) and from (9.2.4), (9.2.3), and (9.1.18) we find

0 > (τ̃ (t), ε(u(t)))Q ≥ (σ(t) − σ̃(t), ε(u(t)))Q,

which yields
(σ(t) − σ̃(t), ε(u(t)))Q < 0. (9.2.6)

On the other hand, it follows from the proof of Theorem 9.1.2 that (9.1.33)
holds, where σ̄ is given by (9.1.31). It is easy to check that 2(σ(t)−σ̃(t)) ∈ Σ0
and therefore, by taking τ = 2(σ(t) − σ̃(t)) in (9.1.33) and using (9.1.31) we
have

(σ(t) − σ̃(t), ε(u(t)))Q ≥ 0. (9.2.7)

We note that inequalities (9.2.6) and (9.2.7) contradict each other, thus u(t) ∈
V2. Using (9.1.30) it follows that σ̃(t) ∈ Σ(t) by the definition (9.1.10). By
setting τ = σ̃(t) in (9.1.18) we find

(F(t),u(t))V ≥ (σ(t), ε(u(t)))Q. (9.2.8)

Moreover, since σ(t) ∈ Σ(t) and u(t) ∈ V2, (9.1.10) implies

(σ(t), ε(u(t)))Q ≥ (F(t),u(t))V . (9.2.9)

Combining now inequalities (9.2.8) and (9.2.9) we obtain

(σ(t), ε(u(t)))Q = (F(t),u(t))V . (9.2.10)

The inequality in (9.1.15) follows now from (9.1.10) and (9.2.10). We
conclude that the pair (u,σ) is the solution of Problem PVvp−S1. �

9.3 Frictional Contact with Normal Compliance

We describe a recent existence result for the problem of viscoplastic ma-
terial with normal compliance and friction, obtained in [221]. Related and
additional results for viscoplastic frictionless contact problems with normal
compliance can be found in [51,222–224].

The mechanical problem is the following.

Problem Pvp−nc. Find a displacement field u : Ω× [0, T ] → R
d and a stress

field σ : Ω × [0, T ] → S
d such that
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σ̇ = Avpε(u̇) + Gvp(σ, ε(u)) in ΩT , (9.3.1)
Div σ + fB = 0 in ΩT , (9.3.2)

u = 0 on ΓD × (0, T ), (9.3.3)
σn = fN on ΓN × (0, T ), (9.3.4)

−σn = pn(un − g),
‖στ‖ ≤ pτ (un − g),

στ = −pτ (un − g)
u̇τ

‖u̇τ‖
if u̇τ �= 0




on ΓC × (0, T ), (9.3.5)

u(0) = u0, σ(0) = σ0 in Ω. (9.3.6)

We turn to the variational formulation of problem (9.3.1) – (9.3.6). We
assume that the force and traction densities satisfy (9.1.7) and, as usual, we
denote by F(t) the element of V given by (9.1.8). The normal and tangential
compliance functions pe (e = n, τ) satisfy assumption (8.3.9) and the gap
function satisfies (8.3.11). We use in this section the contact functional j
defined in (8.3.14) and assume that the initial data satisfy

u0 ∈ V, σ0 ∈ Q1, (9.3.7)

together with the compatibility condition

(σ0, ε(v))Q + j(u0,v) ≥ (F(0),v)V ∀v ∈ V. (9.3.8)

The need for compatibility of the initial data was mentioned above, and
without it the quasistatic approximation may be invalid.

Using standard arguments we have the following variational formulation
of problem Pvp−nc.

Problem PVvp−nc. Find a displacement field u : [0, T ] → V and a stress field
σ : [0, T ] → Q1 such that

σ̇(t) = Avpε(u̇(t)) + Gvp(σ(t), ε(u(t)) a.e. t ∈ (0, T ), (9.3.9)

(σ(t), ε(v) − ε(u̇(t)))Q + j(u(t),v) − j(u(t), u̇(t))
≥ (F(t),v − u̇(t))V ∀v ∈ V, a.e. t ∈ (0, T ), (9.3.10)

u(0) = u0, σ(0) = σ0. (9.3.11)

Existence of a solution to Problem PVvp−nc, under a smallness assumption
on some of the problem data, is given in the following, and has been obtained
in [221].

Theorem 9.3.1. Assume that conditions (6.4.8), (6.4.9), (8.3.9), (8.3.11),
(9.1.7), (9.3.7), and (9.3.8) hold. Then, there exists L0 > 0, depending only
on Ω, ΓD, ΓC , Avp, Gvp and T , such that problem PVvp−nc has at least one
solution if Ln + Lτ < L0. Moreover, the solution satisfies (9.1.20).
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The proof of the theorem can be found in the next section.

We end this section with few comments on Theorem 9.3.1. First, we con-
clude from the theorem that problem (9.3.1)–(9.3.6) has at least one weak
solution provided that Ln + Lτ is sufficiently small. Next, the critical value
L0 depends on the constitutive functions, on the geometry of the problem,
and on the duration of the process, but does not depend on the external
forces, nor on the initial data. The verification of the condition Ln+Lτ < L0,
which guarantees the solvability of problem PVvp−nc as well as its physical in-
terpretation, depends on the specific mechanical problem one has in mind.
For example, consider the mechanical problem Pvp−nc in which the function
pn is given by (8.3.7) or (8.3.8) with m = 1 and the function pτ is given
by (8.6.10) or (8.6.11). It follows that assumption (8.3.9)(b) is satisfied with
Ln = cn and Lτ = µcn and, therefore, the condition Ln + Lτ < L0 holds if
cn(1 + µ) < L0. This may be interpreted as a smallness assumption on the
coefficients cn and µ.

The smallness assumption on the contact data seems to be related to the
fact that we deal with a viscoplastic material. Indeed, we recall that in the
corresponding frictional contact problem with a viscoelastic material, treated
in Sect. 8.3, we proved both the existence and the uniqueness of the solution
without any smallness assumption on the normal compliance functions.

Finally, the important question of uniqueness of the solution of problem
PVvp−nc remains open. This is the case also for the local elastic problem with
normal compliance, treated in [18], when the coefficient of friction and the
loads are assumed to be sufficiently small, as well as for the global elastic
problem with normal compliance and friction studied in [199].

9.4 Proof of Theorem 9.3.1

The proof is carried out in several steps and is based on the study of two
intermediate problems, followed by an application of the Schauder fixed-point
theorem. As usual, c denotes a positive generic constant which may depend
on Ω,ΓD, ΓC ,Avp,Gvp and T , and whose value may change from place to
place.

The main steps of the proof follow. The full details can be found in [221].

Intermediate Elastic Problem. We start by solving the contact problem
when the viscoplastic part of the stress tensor η, the normal contact stress,
and the friction bound ϕ are given. Thus, we consider the functions η and ϕ
which satisfy

η ∈ L∞(0, T ;Q), (9.4.1)

ϕ = (ϕ1, ϕ2) ∈ W 1,∞(0, T ;L2(ΓC)2), (9.4.2)

ϕ(0) = ϕ0, (9.4.3)
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where ϕ0 is the element of L2(ΓC)2 given by

ϕ0 = (pn(u0n − g), pτ (u0n − g)). (9.4.4)

We let zη ∈ W 1,∞(0, T ;Q) and l(ϕ(t), ·) : V → R be defined by

zη(t) =
∫ t

0
η(s)ds+ σ0 − Avpε(u0) ∀t ∈ [0, T ], (9.4.5)

l(ϕ(t),v) =
∫
ΓC

|ϕ1(t)| vn dS +
∫
ΓC

|ϕ2(t)| ‖vτ‖ dS ∀v ∈ V, (9.4.6)

and we consider the following intermediate variational problem.

Problem PϕηV . Find a displacement field uϕη : [0, T ] → V and a stress field
σϕη : [0, T ] → Q1 such that

σϕη(t) = Avpε(uϕη(t)) + zη(t) ∀t ∈ [0, T ], (9.4.7)

(σϕη(t), ε(v) − ε(u̇ϕη(t)))Q + l(ϕ(t),v) − l(ϕ(t), u̇ϕη(t)) (9.4.8)

≥ (F(t),v − u̇ϕη(t))V ∀v ∈ V, a.e. t ∈ (0, T ),

uϕη(0) = u0. (9.4.9)

We note that (9.4.7) represent an elastic-like constitutive law. For this
reason we refer to problem PϕηV as an intermediate elastic problem for which
we have the following result.

Lemma 9.4.1. Problem PϕηV has a unique solution which satisfies

uϕη ∈ W 1,∞(0, T ;V ), σϕη ∈ W 1,∞(0, T ;Q1). (9.4.10)

Moreover, there exists a positive constant c such that

‖uϕη‖W 1,∞(0,T ;V ) + ‖σϕη‖W 1,∞(0,T ;Q1)

≤ c (‖ϕ‖W 1,∞(0,T ;L2(ΓC)2) + ‖F‖W 1,∞(0,T ;V )

+‖zη‖W 1,∞(0,T ;Q) + ‖u0‖V ). (9.4.11)

Proof. The proof is carried out in several steps, using arguments similar to
those in [220, 225]. Since the modifications are straightforward we omit the
details. We employ the bilinear form a : V × V → R which is given by

a(u,v) = (Avpε(u), ε(v))Q. (9.4.12)

The steps of the proof are as follows.

i) Incremental time-discretized problems. Let 0 = t0 < t1 < · · · < tM = T
be a uniform partition of the time interval [0, T ] such that tm = mh, for
m = 1, . . . ,M , where h = T/M . For a continuous function w(t) we use the
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notation wm = w(tm). For a sequence {wm}Mm=0, we denote the differences
by ∆wm = wm − wm−1 and by δwm = ∆wm/h the corresponding divided
differences. No summation is implied over the repeated index m.

Using standard arguments for elliptic variational inequalities yields the
existence of the unique sequence {uϕηm }Mm=0 ⊂ V such that uϕη0 = u0 and, for
m = 1, . . . ,M ,

a(uϕηm ,v − δuϕηm ) + (zηm, ε(v) − ε(δuϕηm ))Q + l(ϕm,v) − l(ϕm, δu
ϕη
m )

≥ (Fm,v − δuϕηm )V ∀v ∈ V. (9.4.13)

Moreover, the following two estimates hold:

‖uϕηm ‖V ≤ c (‖ϕm‖L2(ΓC)2 + ‖Fm‖V + ‖zηm‖Q), (9.4.14)

for 0 ≤ m ≤ M , and

‖∆uϕηm ‖V ≤ c (‖∆ϕm‖L2(ΓC)2 + ‖∆Fm‖V + ‖∆zηm‖Q), (9.4.15)

for 1 ≤ m ≤ M . To prove the estimate (9.4.14) for m = 0 we have to use the
compatibility assumption on the initial data

a(u0,v) + (z0, ε(v))Q + l(ϕ(0),v) ≥ (F(0),v)V ,

which follows from (9.3.8), (9.4.2)–(9.4.4) and the definition of the functionals
j and l.

ii) Weak ∗ convergence. We define a piecewise linear function uϕηM using
linear interpolation of the sequence {uϕηm }Mm=0 ⊂ V as follows,

uϕηM (t) = uϕηm−1 +
t− tm−1

h
∆uϕηm , (9.4.16)

for t ∈ [tm−1, tm] and 1 ≤ m ≤ M .
Each one of the functions uϕηM belongs to the space W 1,∞(0, T ;V ) and the

assertions (9.4.14) and (9.4.15) show that the sequence {uϕηM }M is bounded
there. Therefore, there exists a function uϕη ∈ W 1,∞(0, T ;V ) and a subse-
quence of {uϕηM }M , still denoted by {uϕηM }M , such that

uϕηM → uϕη weak * in W 1,∞(0, T ;V ) as M → ∞. (9.4.17)

Actually, in step v) below we will show that the whole sequence {uϕηM }M
converges to uϕη. Also, there exists a positive constant c such that

‖uϕη‖W 1,∞(0,T ;V ) ≤ c (‖ϕ‖W 1,∞(0,T ;L2(ΓC)2) + ‖F‖W 1,∞(0,T ;V )

+‖zη‖W 1,∞(0,T ;Q) + ‖u0‖V ). (9.4.18)

The proof of (9.4.18) is based on inequalities (9.4.14) and (9.4.15), which
provide estimates for the functions uϕηM in the norm of W 1,∞(0, T ;V ).



9.4 Proof of Theorem 9.3.1 147

iii) Convergence and semicontinuity. Let uϕη denote an element of
W 1,∞(0, T ;V ) that was obtained in step ii) as the weak ∗ limit of a sub-
sequence of {uϕηM }M . We introduce the piecewise constant functions ũϕηM :
[0, T ] → V , z̃ ηM : [0, T ] → Q, ϕ̃M : [0, T ] → L2(ΓC)2, and F̃M : [0, T ] → V by

ũϕηM (t) = uϕηm , z̃ηM (t) = z ηm, ϕ̃M (t) = ϕm, F̃M (t) = Fm, (9.4.19)

for t ∈ (tm−1, tm], and m = 1, . . . ,M . For almost every t ∈ (0, T ) we have

‖ũϕηM (t) − uϕηM (t)‖V ≤ T

M
‖u̇ϕηM (t)‖V , (9.4.20)

and, since {u̇ϕηM }M is bounded in L∞(0, T ;V ), we deduce that

ũϕηM → uϕη weak * in L∞(0, T ;V ) as M → ∞. (9.4.21)

Furthermore, since zη ∈ W 1,∞(0, T ;Q), ϕ ∈ W 1,∞(0, T ;L2(ΓC)2), and F ∈
W 1,∞(0, T ;V ), we obtain

z̃ηM → zη strongly in L2(0, T ;Q), (9.4.22)

ϕ̃M → ϕ strongly in L2(0, T ;L2(ΓC)2), (9.4.23)

F̃M → F strongly in L2(0, T ;V ), (9.4.24)

as M → ∞. Using (9.4.13) we find that for v ∈ L2(0, T ;V ) we have
∫ T

0
a(ũϕηM (t),v(t))dt+

∫ T

0
(z̃ ηM (t), ε(v(t)) − ε(u̇ϕηM (t)))Qdt

+
∫ T

0
l(ϕ̃M (t),v(t))dt ≥

∫ T

0
(F̃M (t),v(t) − u̇ϕηM (t))V dt

+
∫ T

0
a(ũϕηM (t), u̇ϕηM (t))dt+

∫ T

0
l(ϕ̃M (t), u̇ϕηM (t))dt. (9.4.25)

To pass to the lower limit in (9.4.25), we need the following convergence
results. First, (9.4.21)–(9.4.24) and the weak ∗ convergence of {u̇ϕηM }M to u̇ϕη
yield

∫ T

0
a(ũϕηM (t),v(t)) dt →

∫ T

0
a(uϕη(t),v(t)) dt, (9.4.26)

∫ T

0
(z̃ ηM (t), ε(v(t)) − ε(u̇ϕηM (t)))Q dt (9.4.27)

→
∫ T

0
(zη(t), ε(v(t)) − ε(u̇ϕη(t)))Q dt,

∫ T

0
(F̃M (t),v(t) − u̇ϕηM (t))V dt →

∫ T

0
(F(t),v(t) − u̇ϕη(t))V dt, (9.4.28)
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∫ T

0
l(ϕ̃M (t),v(t))dt →

∫ T

0
l(ϕ(t),v(t))dt, (9.4.29)

for all v ∈ L2(0, T ;V ), as M → ∞. Next, using standard semicontinuity
arguments and some straightforward manipulations we find

lim inf
M→∞

∫ T

0
l(ϕ̃M (t), u̇ϕηM (t)) dt ≥

∫ T

0
l(ϕ(t), u̇ϕη(t)) dt, (9.4.30)

lim inf
M→∞

∫ T

0
a(ũϕηM (t), u̇ϕηM (t)) dt ≥ 1

2
a(uϕη(T ),uϕη(T )) − 1

2
a(u0,u0)

=
∫ T

0
a(uϕη(t), u̇ϕη(t)) dt. (9.4.31)

iv) Existence. It follows from (9.4.25)–(9.4.31) that

a(uϕη(t),v(t) − u̇ϕη(t)) + (zη(t), ε(v(t)) − ε(u̇ϕη(t)))Q

+l(ϕ(t),v) − l(ϕ(t), u̇ϕη(t)) ≥ (F(t),v(t) − u̇ϕη(t))V , (9.4.32)

for all v ∈ V , a.e. t ∈ (0, T ). Moreover, uϕη(0) = u0 and so (9.4.9) holds. Let
σϕη ∈ W 1,∞(0, T ;Q) be the element given by (9.4.7). We use (9.4.32) and
(9.4.12) to obtain (9.4.8). Also, (9.4.8) implies that

Div σϕη(t) + f0(t) = 0 ∀t ∈ [0, T ], (9.4.33)

and then it follows from (9.1.7) that σϕη ∈ W 1,∞(0, T ;Q1). We conclude
that (uϕη,σϕη) is a solution of Problem PϕηV and it satisfies (9.4.10).

v) Uniqueness and boundness. The uniqueness of the solution follows
from the unique solvability of the Cauchy problem (9.4.32) and (9.4.9).
Moreover, this shows that the whole sequence {uϕηM }M converges weak ∗ in
W 1,∞(0, T ;V ) to uϕη. Finally, estimate (9.4.11) follows from (9.4.18), (9.4.7),
(9.4.33), and (6.4.8). �

Intermediate Viscoplastic Problem. We solve the contact problem for
the fully elastic-viscoplastic constitutive relation when the normal stress and
the friction bound on the contact surface are prescribed. To that end we shall
use the Banach fixed point theorem. Let ϕ be a given function which satisfies
(9.4.2), (9.4.3) and consider the following intermediate problem.

Problem PϕV . Find a displacement field uϕ : [0, T ] → V and a stress field
σϕ : [0, T ] → Q1 such that

σ̇ϕ(t) = Avpε(u̇ϕ(t)) + Gvp(σϕ(t), ε(uϕ(t))) a.e. t ∈ (0, T ), (9.4.34)

(σϕ(t), ε(v) − ε(u̇ϕ(t)))Q + l(ϕ(t),v) − l(ϕ(t), u̇ϕ(t))

≥ (F(t),v − u̇ϕ(t))V ∀v ∈ V, a.e. t ∈ (0, T ), (9.4.35)

uϕ(0) = u0, σϕ(0) = σ0. (9.4.36)
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We have following the existence and uniqueness result.

Lemma 9.4.2. Problem PϕV has a unique solution which satisfies

uϕ ∈ W 1,∞(0, T ;V ), σϕ ∈ W 1,∞(0, T ;Q1). (9.4.37)

Moreover, there exists a positive constant c such that

‖uϕ‖W 1,∞(0,T ;V ) + ‖σϕ‖W 1,∞(0,T ;Q1)

≤ c (‖ϕ‖W 1,∞(0,T ;L2(ΓC)2) + ‖F‖W 1,∞(0,T ;V )

+‖u0‖V + ‖σ0‖Q1 + ‖G(0,0)‖Q). (9.4.38)

Proof. The proof is carried out in three steps.

i) Using the Banach fixed point theorem. We consider the operator Λϕ :
L∞(0, T ;Q) → L∞(0, T ;Q) defined by

Λϕη = Gvp(σϕη, ε(uϕη)) ∀η ∈ L∞(0, T ;Q), (9.4.39)

where (uϕη,σϕη) is the solution of the intermediate elastic problem PϕηV
provided by Lemma 9.4.1. We prove that the operator Λϕ has a unique fixed
point η∗

ϕ ∈ L∞(0, T ;Q). To this end, let η1,η2 ∈ L∞(0, T ;Q) and denote
ui = uϕηi

, σi = σϕηi
, and zi = zηi

for i = 1, 2. We rewrite (9.4.32) as

a(u1,v − u̇1) + (z1, ε(v) − ε(u̇1))Q + l(ϕ,v) − l(ϕ, u̇1) ≥ (F,v − u̇1)V ,

a(u2,v − u̇2) + (z2, ε(v) − ε(u̇2))Q + l(ϕ,v) − l(ϕ, u̇2) ≥ (F,v − u̇2)V

for all v ∈ V , a.e. on (0, T ). Let t ∈ [0, T ]. We choose v = u̇2 in the first
inequality, v = u̇1 in the second inequality, add the two inequalities and
integrate the result on [0, t], thus

c ‖u1(t) − u2(t)‖2
V ≤ ‖z1(t) − z2(t)‖Q‖u1(t) − u2(t)‖V

+
∫ t

0
‖η1(s) − η2(s)‖Q‖u1(s) − u2(s)‖V ds.

Now,

‖z1(t) − z2(t)‖Q ≤
∫ t

0
‖η1(s) − η2(s)‖Qds,

and, therefore, we find

‖u1(t) − u2(t)‖2
V ≤ c

∫ t

0
‖η1(s) − η2(s)‖2

Qds+ c

∫ t

0
‖u1(s) − u2(s)‖2

V ds.

Applying the Gronwall inequality we obtain

‖u1(t) − u2(t)‖2
V ≤ c

∫ t

0
‖η1(s) − η2(s)‖2

Qds. (9.4.40)
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From the definition (9.4.7) of σ1 and σ2 we have

σ1(t) − σ2(t) = Avpε(u1(t) − u2(t)) + z1(t) − z2(t)

= Avpε(u1(t) − u2(t)) +
∫ t

0
(η1(s) − η2(s)) ds,

and by using (9.4.40) we deduce

‖σ1(t) − σ2(t)‖2
Q ≤ c

∫ t

0
‖η1(s) − η2(s)‖2

Qds. (9.4.41)

Finally,

Λϕη1(t) − Λϕη2(t) = Gvp(σ1(t), ε(u1(t))) − Gvp(σ2(t), ε(u2(t))).

Using the assumptions (6.4.9) and the bounds (9.4.40) and (9.4.41) yields

‖Λϕη1(t) − Λϕη2(t)‖2
Q ≤ c

∫ t

0
‖η1(s) − η2(s)‖2

Qds. (9.4.42)

We deduce now from (9.4.42) and an application of Banach’s fixed point
theorem to a suitable iteration power of the map Λϕ that the operator Λϕ
has a unique fixed point η∗

ϕ ∈ L∞(0, T ;Q).

ii) Existence. Let (uϕ,σϕ) be the solution of problem PϕηV for η = ηϕ,
that is, uϕ = uϕηϕ and σϕ = σϕηϕ . Using (9.4.7) and (9.4.5) we have

σ̇ϕ(t) = Avpε(u̇ϕ(t)) + ηϕ(t) a.e. t ∈ (0, T )

and using (9.4.39) yields

ηϕ(t) = Λϕηϕ(t) = Gvp(σϕ(t), ε(uϕ(t))) a.e. t ∈ (0, T ).

Combining the previous two equalities we find that (uϕ,σϕ) satisfies (9.4.34).
Moreover, from (9.4.5), (9.4.7), and (9.4.9) it follows that (9.4.36) holds and,
finally, (9.4.35) is a consequence of (9.4.8). We conclude that (uϕ,σϕ) is a
solution of problem PϕV and it satisfies (9.4.37).

iii) Uniqueness. The uniqueness of the solution follows from the unique-
ness of the fixed point of the operator Λϕ. Note that a similar argument was
already used (page 138) in the proof of the uniqueness part in Theorem 9.1.1.

iv) Boundedness. It follows from (9.4.34)–(9.4.36) and the arguments used
in the proof of Lemma 3.1 in [220], after straightforward but tedious manip-
ulations, that

‖uϕ(t)‖V + ‖σϕ(t)‖Q1

≤ c(‖ϕ‖W 1,∞(0,T ;L2(ΓC)2) + ‖F‖W 1,∞(0,T ;V )

+‖u0‖V + ‖σ0‖Q1 + ‖Gvp(0,0)‖Q), (9.4.43)
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for all t ∈ [0, T ]. We let zϕ = zηϕ
, and by using (9.4.5) and (9.4.39) again,

we deduce that

zϕ(t) =
∫ t

0
Gvp(σϕ(s), ε(uϕ(s)))ds+ σ0 − Avpε(u0) (9.4.44)

for all t ∈ [0, T ]. Writing now

Gvp(σϕ(s), ε(uϕ(s))) =
[
Gvp(σϕ(s), ε(uϕ(s))) − Gvp(0,0)

]
+ Gvp(0,0)

and using condition (6.4.9), it follows from (9.4.44) that

‖zϕ(t)‖Q ≤ c
(
‖u0‖V + ‖σ0‖Q1 + ‖Gvp(0,0)‖Q

+
∫ t

0
(‖uϕ(s)‖V + ‖σϕ(s)‖Q)ds

)
(9.4.45)

a.e. t ∈ (0, T ), and

‖żϕ(t)‖Q ≤ c (‖uϕ(t)‖V + ‖σϕ(t)‖Q + ‖Gvp(0,0)‖Q) (9.4.46)

for all t ∈ [0, T ].
Now, keeping in mind (9.4.43), (9.4.45), and (9.4.46) we obtain

‖zϕ‖W 1,∞(0,T ;Q) ≤ c
(
‖u0‖V + ‖σ0‖Q1 + ‖Gvp(0,0)‖Q
+‖ϕ‖W 1,∞(0,T ;L2(ΓC)2)

+‖F‖W 1,∞(0,T ;V )
)

∀t ∈ [0, T ]. (9.4.47)

We use (9.4.11) with η = ηϕ and (9.4.47) to obtain (9.4.38). �

The contact boundary operator. Let k > 0 and denote by Lip 0
k the set

Lip 0
k = { ϕ ∈ W 1,∞(0, T ;L2(ΓC)2) : ‖ϕ̇‖L∞(0,T ;L2(ΓC)2) ≤ k, ϕ(0) = ϕ0 },

where ϕ0 is the element of L2(ΓC)2 given by (9.4.3). We note that

‖ϕ‖W 1,∞(0,T ;L2(ΓC)2) ≤ k(T + 1) + ‖ϕ0‖L2(ΓC)2 ∀ϕ ∈ Lip 0
k, (9.4.48)

and for every ϕ ∈ Lip 0
k we denote by (uϕ,σϕ) the solution of the intermediate

viscoplastic problem PϕV provided by Lemma 9.4.2.
We begin with the following estimate.

Lemma 9.4.3. There exists a positive constant ck such that

‖uϕ1 − uϕ2‖C([0,T ];V ) + ‖σϕ1 − σϕ2‖C([0,T ];Q1)

≤ ck
(
‖uϕ1 − uϕ2‖C([0,T ];L2(ΓC)d)

) 1
2 (9.4.49)

for all ϕ1, ϕ2 ∈ Lip 0
k.
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Proof. Let ϕ1, ϕ2 ∈ Lip 0
k and let t ∈ [0, T ]. For i = 1, 2 we use the notation

uϕi
= ui, σϕi

= σi and then it follows from Pϕi

V that each ui satisfies

a(ui(t),v) + l(ϕi(t),v) ≥ (F(t),v)V − (σ0 − Avpε(u0)

+
∫ t

0
Gvp(σi(s), ε(ui(s)))ds, ε(v))Q ∀v ∈ V. (9.4.50)

Using standard arguments it follows from (9.4.50) that

a(u2(t) − u1(t),u2(t) − u1(t))
≤ l(ϕ1(t),u2(t) − u1(t)) + l(ϕ2(t),u1(t) − u2(t))

+(
∫ t

0
[Gvp(σ2(s), ε(u2(s))) − Gvp(σ1(s), ε(u1(s)))]ds, ε(u1(t)) − ε(u2(t)))Q.

By using (6.4.8) and (6.4.9) we find

‖u1(t) − u2(t)‖2
V ≤ c

(
‖ϕ1(t)‖L2(ΓC)2 ‖u1(t) − u2(t)‖L2(ΓC)d

+‖ϕ2(t)‖L2(ΓC)2‖u1(t) − u2(t)‖L2(ΓC)d

+
∫ t

0
(‖u1(s) − u2(s)‖2

V + ‖σ1(s) − σ2(s)‖2
Q)ds

)
. (9.4.51)

Then (9.4.51) and (9.4.48) lead to

‖u1(t) − u2(t)‖2
V ≤ c

(
Mk‖u1 − u2‖C([0,T ];L2(ΓC)d)

+
∫ t

0
(‖u1(s) − u2(s)‖2

V + ‖σ1(s) − σ2(s)‖2
Q)ds

)
, (9.4.52)

where Mk = 2
(
k(T + 1) + ‖ϕ0‖L2(ΓC)2

)
. On the other hand,

σ1(t) − σ2(t) = Avpε(u1 − u2)(t)

+
∫ t

0
(Gvp(σ1(s), ε(u1(s))) − Gvp(σ2(s), ε(u2(s))))ds,

and since Div(σ1(t) − σ2(t)) = 0, we obtain

‖σ1(t) − σ2(t)‖Q1 ≤ c
(

‖u1(t) − u2(t)‖V

+
∫ t

0
(‖u1(s) − u2(s)‖V + ‖σ1(s) − σ2(s)‖Q)ds

)
,

which implies

‖σ1(t) − σ2(t)‖2
Q1

≤ c
(
‖u1(t) − u2(t)‖2

V

+
∫ t

0
(‖u1(s) − u2(s)‖2

V + ‖σ1(s) − σ2(s)‖2
Q)ds

)
.
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This inequality and (9.4.52) imply

‖σ1(t) − σ2(t)‖2
Q1

≤ c
(
Mk‖u1 − u2‖C([0,T ];L2(ΓC)d)

+
∫ t

0
(‖u1(s) − u2(s)‖2

V + ‖σ1(s) − σ2(s)‖2
Q)ds

)
. (9.4.53)

Adding (9.4.52) and (9.4.53) and using Gronwall’s lemma, we deduce (9.4.49)
with ck = O(k) + 1. �

Next, assumptions (8.3.9) on the normal compliance functions mean that
pe(uϕn − g) ∈ C([0, T ];L2(ΓC)2) for e = n, τ and ϕ ∈ Lip 0

k. This allows us
to consider the contact operator

T : Lip 0
k ⊂ C([0, T ];L2(ΓC)2) → C([0, T ];L2(ΓC)2),

defined by
T ϕ = (pn(uϕn − g), pτ (uϕn − g)). (9.4.54)

We turn to investigate the properties of T .

Lemma 9.4.4. The operator T is compact.

Proof. Let {ϕm} be a sequence of elements of Lip 0
k and for m ∈ N we denote

by (um,σm) the solution of Problem Pϕm

V provided by Lemma 9.4.2. Using
(9.4.48) it follows that {ϕm} is a bounded sequence in W 1,∞(0, T ;L2(ΓC)2)
and estimate (9.4.38) shows that {um} is a bounded sequence in W 1,∞

(0, T ;V ). By the continuity of the trace map we find that the sequence
of traces on ΓC of the displacements {um} is a bounded sequence in
W 1,∞(0, T ;L2(ΓC)d). It follows now from the Arzela-Ascoli theorem that
we can extract a subsequence of {ump} such that the sequence of its traces
on ΓC converge strongly in C([0, T ];L2(ΓC)d), and so is a Cauchy sequence.
Using now Lemma 9.4.3 shows that the corresponding subsequences of {ump}
and {σmp} are Cauchy sequences in C([0, T ];V ) and C([0, T ];Q1), respec-
tively, and therefore they converge strongly there. Let u ∈ C([0, T ];V ) be
the limit in C([0, T ];V ) of the subsequence {ump

} and denote by umpn the
normal component of ump ∈ V . We use now (8.3.14) and (6.2.9) and obtain
that

pn(umpn − g) → pn(un − g), pτ (umpn − g) → pτ (un − g)

in C([0, T ];L2(ΓC)) as mp → ∞, which shows that the sequence {T ϕmp
}

converges in C([0, T ];L2(ΓC)2). This proves the lemma. �

Lemma 9.4.5. The operator T is continuous.

Proof. Let ϕ ∈ Lip 0
k and let {ϕm} be a sequence of elements of Lip 0

k such
that ϕm → ϕ in C([0, T ];L2(ΓC)2). For m ∈ N we denote by (um,σm)
the solution of Problem Pϕm

V provided by Lemma 9.4.2. Using (9.4.48) and
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(9.4.38) it follows that {(um,σm)} is a bounded sequence in W 1,∞(0, T ;V ×
Q1). Therefore, by using arguments similar to those in the proof of Lemma
6.2 we find that there exists (u,σ) ∈ W 1,∞(0, T ;V × Q1) such that, for a
subsequence {(ump ,σmp)}, we have

(ump
,σmp

) → (u,σ) weak * in W 1,∞(0, T ;V ×Q1), (9.4.55)

(ump ,σmp) → (u,σ) in C([0, T ];V ×Q1), (9.4.56)

as mp → ∞. Using now (9.4.34)–(9.4.36) we obtain

σmp(t) = Avpε(ump(t)) + zmp(t) ∀t ∈ [0, T ], (9.4.57)

a(ump
(t),v − u̇mp

(t)) + (zmp
(t), ε(v) − ε(u̇mp

(t)))Q

+l(ϕmp
(t),v) − l(ϕ(t), u̇mp(t)) ≥ (F(t),v − u̇mp(t))V , (9.4.58)

for all v ∈ V , a.e. t ∈ (0, T ), where, for all t ∈ [0, T ],

zmp
(t) =

∫ t

0
Gvp(σmp

(s), ε(ump
(s))) ds+ σ0 − Avpε(u0). (9.4.59)

Moreover,
ump(0) = u0. (9.4.60)

Passing to the limit in (9.4.57)–(9.4.60) as mp → ∞ and using (9.4.55)
and (9.4.56) we obtain

σ(t) = Avpε(u(t)) + z(t) ∀t ∈ [0, T ], (9.4.61)

a(u(t),v − u̇(t)) + (z(t), ε(v) − ε(u̇(t)))Q + l(ϕ(t),v) − l(ϕ(t), u̇(t))
≥ (F(t),v − u̇(t))V , (9.4.62)

for all v ∈ V , a.e. t ∈ (0, T ), and

u(0) = u0, (9.4.63)

where

z(t) =
∫ t

0
Gvp(σ(s), ε(u(s)) ds+ σ0 − Avpε(u0) ∀t ∈ [0, T ]. (9.4.64)

Indeed, it follows from (6.4.9) and (9.4.56) that zmp → z in C([0, T ];Q) and,
therefore, (9.4.57) and (6.4.8) imply (9.4.61). To prove (9.4.62) we integrate
(9.4.58) on [0, T ], employ arguments similar to those in the proof of Lemma
9.4.1 (see (9.4.26)–(9.4.31)) and then perform a localization argument, based
on a classical application of Lebesgue point for L1 functions.

It follows from (9.4.61)–(9.4.64) that (u,σ) is a solution of problem PϕV .
We use (9.4.56) and (6.2.9) to show that umpn → un in C([0, T ];L2(ΓC))
and, keeping in mind (8.3.9) and (9.4.54), we find that T ϕmp

→ T ϕ in
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C([0, T ];L2(ΓC)2) as mp → ∞. These arguments show that T ϕ is the limit
of all the convergent subsequences {T ϕmp

} ⊂ {T ϕm}. Lemma 9.4.4 now
implies that T is a compact operator and we deduce that the whole sequence
is convergent, i.e., T ϕm → T ϕ in C([0, T ];L2(ΓC)2) as m → ∞, which
concludes the proof of the lemma. �

In the next step we prove that, under a suitable assumption, we can find
k > 0 such that the set Lip 0

k is invariant under the operator T .

Lemma 9.4.6. There exists a positive constant L0, which depends only on
Ω,ΓD, ΓC ,Avp,Gvp, and T , such that whenever Ln + Lτ < L0 then there
exists k > 0 such that

ϕ ∈ Lip 0
k =⇒ T ϕ ∈ Lip 0

k. (9.4.65)

Proof. Let k > 0, ϕ ∈ Lip 0
k, and let t1, t2 ∈ [0, T ]. Using (9.4.54), (11.4.12),

and (6.2.9) we have

‖T ϕ(t1) − T ϕ(t2)‖L2(ΓC)2 ≤ c(Ln + Lτ )‖u(t1) − u(t2)‖V
≤ c(Ln + Lτ )‖u̇ϕ‖L∞(0,T ;V )|t1 − t2|,

and, keeping in mind (9.4.38), we find

‖T ϕ(t1) − T ϕ(t2)‖L2(ΓC)2

≤ c(Ln + Lτ )(‖ϕ‖W 1,∞(0,T ;L2(ΓC)2) + θ)|t1 − t2|, (9.4.66)

where θ is a positive number which does not depend on k. We now combine
(9.4.66) and (9.4.48) and obtain

‖T ϕ(t1)−T ϕ(t2)‖L2(ΓC)2 ≤ c(Ln+Lτ )(k(T +1)+‖ϕ0‖L2(ΓC)2 + θ)|t1 − t2|.

We conclude that T ϕ ∈ W 1,∞(0, T ;L2(ΓC)2) and, moreover,

∥∥∥ d
dt

T ϕ
∥∥∥
L∞(0,T ;L2(ΓC)2)

≤ c(Ln + Lτ )(k(T + 1) + ‖ϕ0‖L2(ΓC)2 + θ).

We choose L0 = 1
c(T+1) and it is straightforward to show that when

Ln + Lτ < L0 then we can find k > 0 such that

c(Ln + Lτ )(k(T + 1) + ‖ϕ0‖L2(ΓC)2 + θ) ≤ k,

and, therefore, ∥∥∥ d
dt

T ϕ
∥∥∥
L∞(0,T ;L2(ΓC)2)

≤ k.

Since by (9.4.36) and (9.4.4) we have T ϕ(0) = ϕ0, we conclude that T ϕ ∈
Lip 0

k, which proves the lemma. �
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We have now all the ingredients to prove the theorem.

Proof (Theorem 9.3.1). We choose L0 as in Lemma 9.4.6 and assume that
Ln + Lτ < L0. We also choose k such that (9.4.65) holds. It is straight-
forward to show that Lip 0

k is a nonempty, closed, bounded, and convex set
in the Banach space C([0, T ];L2(ΓC)2) and our choice of k guarantees that
T (Lip 0

k) ⊂ Lip 0
k. Moreover, it follows from Lemmas 9.4.4 and 9.4.5 that T

is a completely continuous operator. Therefore, by using the Schauder fixed
point theorem (Theorem 6.3.10 on page 95) we deduce that T has a fixed
point, i.e., there exists a an element ϕ∗ ∈ Lip 0

k such that T ϕ∗ = ϕ∗. Let
(u∗,σ∗) denote the solution of Problem PϕV with the choice ϕ = ϕ∗. It follows
now from (9.4.54), since pn and pτ are nonnegative functions, that

|ϕ∗
n(t)| = pn(u∗

n(t) − g), |ϕ∗
τ (t)| = pτ (u∗

n(t) − g) ∀t ∈ [0, T ],

and by using (9.4.6) and (8.3.14)) we obtain

l(ϕ∗(t),v) = j(u∗(t),v) ∀v ∈ V, t ∈ [0, T ].

We conclude from (9.4.34)–(9.4.37) that (u∗,σ∗) is a solution of problem
PVvp−nc and it satisfies (9.1.20), and this concludes the proof. �

9.5 Bilateral Frictional Contact

We follow [225] and assume that there is no loss of contact during the pro-
cess, and so the normal displacement un vanishes on ΓC . We model friction
with the Tresca friction law (2.6.10). The viscoplastic constitutive law of the
material is assumed to be (6.4.7), with the properties (6.4.8) and (6.4.9).

The classical formulation of the mechanical problem is as follows.

Problem Pvp−b. Find a displacement field u : Ω × [0, T ] → R
d and a stress

field σ : Ω × [0, T ] → S
d such that

σ̇ = Avpε(u̇) + Gvp(σ, ε(u)) in ΩT , (9.5.1)
Div σ + fB = 0 in ΩT , (9.5.2)

u = 0 on ΓD × (0, T ), (9.5.3)
σn = fN on ΓN × (0, T ), (9.5.4)

un = 0,
‖στ‖ ≤ H,

στ = −H u̇τ
‖u̇τ‖

if u̇τ �= 0




onΓC × (0, T ), (9.5.5)

u(0) = u0, σ(0) = σ0 in Ω. (9.5.6)

Here, u0 and σ0 are the initial displacement and stress fields, respectively.
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We use the subspace V1, defined in (6.2.7), for the displacements and the
space Q1, (6.2.10), for the stresses. Over the subspace V1 we use the inner
product of V , and then V1 is itself a Hilbert space.

We assume that the force and the traction densities satisfy (7.3.7) and the
friction bound satisfies (7.3.8). We denote by F(t) the element of V1 given
by (7.3.11) for all v ∈ V1, t ∈ [0, T ], and let j : V1 → R+ be the friction
functional

(7.3.10). We also denote by Σ(t), for t ∈ [0, T ], the set of admissible stress
fields

Σ(t) = {τ ∈ Q : (τ , ε(v))Q + j(v) ≥ (F(t),v)V ∀v ∈ V1} (9.5.7)

and we assume that the initial data satisfy

u0 ∈ V1, σ0 ∈ Σ(0). (9.5.8)

It is straightforward to show that if u and σ are smooth functions satis-
fying (9.5.2)–(9.5.5), then

u(t) ∈ V1, (σ(t), ε(v) − ε(u̇(t)))Q + j(v) − j(u̇(t))
≥ (F(t),v − u̇(t))V ∀v ∈ V1, (9.5.9)

σ(t) ∈ Σ(t), (τ − σ(t), ε(u̇(t)))Q ≥ 0 ∀ τ ∈ Σ(t), (9.5.10)

for all t ∈ [0, T ]. These inequalities lead to the following two weak formula-
tions of the frictional problem (9.5.1)–(9.5.6).

Problem PVvp−b1. Find a displacement field u : [0, T ] → V1 and a stress field
σ : [0, T ] → Q1 such that

σ̇(t) = Avpε(u̇(t)) + G(σ(t), ε(u(t))) a.e. t ∈ (0, T ), (9.5.11)

(σ(t), ε(v) − ε(u̇(t)))Q + j(v) − j(u̇(t)) ≥ (F(t),v − u̇(t))V
∀v ∈ V1, a.e. t ∈ (0, T ), (9.5.12)

u(0) = u0, σ(0) = σ0. (9.5.13)

Problem PVvp−b2. Find a displacement field u : [0, T ] → V1 and a stress field
σ : [0, T ] → Q1 such that

σ̇(t) = Avpε(u̇(t)) + G(σ(t), ε(u(t))) a.e. t ∈ (0, T ), (9.5.14)

σ(t) ∈ Σ(t), (τ − σ(t), ε(u̇(t)))Q ≥ 0
∀ τ ∈ Σ(t), a.e. t ∈ (0, T ), (9.5.15)

u(0) = u0, σ(0) = σ0. (9.5.16)

Note that whereas in problem PVvp−b1 the main role is played by the dis-
placements field, in problem PVvp−b2, which is the so-called dual formulation ,
the main role in played by the stress field.



158 9 Viscoplastic Contact

The first existence and uniqueness result is the following ( [225]).

Theorem 9.5.1. Assume (6.4.8), (6.4.9), (7.3.7), (7.3.8), and (9.5.8). Then
there exists a unique solution (u,σ) to Problem PVvp−b1. Moreover, the solu-
tion satisfies (9.1.20).

Proof. The proof of Theorem 9.5.1 is carried out in several steps, using results
of evolutionary variational inequalities and the Banach fixed-point theorem.
An outline of the steps follows.

(i) Let η ∈ L∞(0, T ;Q) and define the function zη ∈ W 1,∞(0, T ;Q) by
(9.1.21). Then, there exists a unique solution (uη,ση), which satisfies (9.1.20),
of the variational problem

ση(t) = Avpε(uη(t)) + zη(t) ∀ t ∈ [0, T ], (9.5.17)

(ση(t), ε(v) − ε(u̇η(t)))Q + j(v) − j(u̇η(t))
≥ (F(t),v − u̇η(t))V ∀v ∈ V1, a.e. t ∈ (0, T ), (9.5.18)

uη(0) = u0, ση(0) = σ0. (9.5.19)

(ii) Consider the operator defined by (9.1.25), where (uη,ση) is the solu-
tion of the variational problem (9.5.17)–(9.5.19). Then, the operator Λ has a
unique fixed point η∗ ∈ L∞(0, T ;Q).

(iii) Existence. Let η∗ ∈ L∞(0, T ;Q) be the fixed point of Λ and let
(uη∗ ,ση∗) be the solution of problem (9.5.17)–(9.5.19) for η = η∗. It follows
that (uη∗ ,ση∗) is a solution of Problem PVvp−b1 satisfying (9.1.20).

(iv) Uniqueness. The uniqueness part follows from the uniqueness of the
fixed point of the operator Λ. The details are very similar to those in the
proof of Theorem 9.1.1, and so we skip them. �

The second existence and uniqueness result follows ( [225]).

Theorem 9.5.2. Assume (6.4.8), (6.4.9), (7.3.7), (7.3.8) and (9.5.8). Then
there exists a unique solution (u,σ) of Problem PVvp−b2 and it satisfies
(9.1.20).

Proof. We first remark that the variational inequality (9.5.15) is posed over
a time-dependent convex set Σ(t). To avoid this time dependence of the set
we use a change of variable, similar to the one used in the proof of Theorem
9.1.2. To that end, let

Σ0 = { τ ∈ Q : (τ , ε(v))Q + j(v) ≥ 0 ∀v ∈ V1 }, (9.5.20)
σ̃ = ε(F), (9.5.21)

σ̄ = σ − σ̃, σ̄0 = σ0 − σ̃(0). (9.5.22)

Consider now the variational problem of finding u : [0, T ] → V1 and σ̄ :
[0, T ] → Q1 such that
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ε(u̇(t)) = A−1
vp

˙̄σ(t) − A−1
vp Gvp(σ̄(t) + σ̃(t), ε(u(t)))

+A−1
vp

˙̃σ(t) a.e. t ∈ (0, T ), (9.5.23)

σ̄(t) ∈ Σ0, (τ − σ̄(t), ε(u̇(t)))Q ≥ 0

∀τ ∈ Σ0, a.e. t ∈ (0, T ), (9.5.24)

u(0) = u0 σ̄(0) = σ̄0. (9.5.25)

From (9.5.7) it follows that

Σ(t) = Σ0 + {σ̃(t)} ∀ t ∈ [0, T ]. (9.5.26)

Using (7.3.7), (7.3.11) and (9.5.21) we have

σ̃(t) ∈ W 1,∞(0, T ;Q1). (9.5.27)

Using now (9.5.22)–(9.5.27) it is straightforward to verify that the pair
(u,σ) is a solution of Problem PVvp−b2 and such that u ∈ W 1,∞(0, T ;V1),
σ ∈ W 1,∞(0, T ;Q1) if and only if (u, σ̄) is a solution for problem (9.5.23)–
(9.5.25), and u ∈ W 1,∞(0, T ;V1), σ̄ ∈ W 1,∞(0, T ;Q1).

We turn to problem (9.5.23)–(9.5.25), which we solve, again, by using the
fixed point method. The proof proceeds in four steps which we now describe.

(i) Let η ∈ L∞(0, T ;Q) and consider the problem of finding uη : [0, T ] →
V1 and ση : [0, T ] → Q1 such that

ε(u̇η(t)) = A−1
vp σ̇η(t) + η(t) a.e. t ∈ (0, T ), (9.5.28)

ση(t) ∈ Σ0, (τ − ση(t), ε(u̇η(t)))Q ≥ 0

∀ τ ∈ Σ0, a.e. t ∈ (0, T ), (9.5.29)

uη(0) = u0, ση(0) = σ̄0. (9.5.30)

The unique solvability of problem (9.5.28)–(9.5.30) is based on Theorem
6.3.5. Indeed, Theorem 6.3.5 combined with a regularity result may be used
to show that problem (9.5.28)–(9.5.30) has a unique solution (uη,ση), such
that uη ∈ W 1,∞(0, T ;V1) and ση ∈ W 1,∞(0, T ;Q1).

(ii) We consider now the operator Λ : L∞(0, T ;Q) → L∞(0, T ;Q) defined
by

Λη = A−1
vp

˙̃σ − A−1
vp G(ση + σ̃, ε(uη)), (9.5.31)

and prove that it has a unique fixed point η∗ ∈ L∞(0, T ;Q).
(iii) Existence. Let η∗ ∈ L∞(0, T ;Q) be the fixed point of Λ and let

(uη∗ ,ση∗) ∈ W 1,∞(0, T ;V1 × Q1) be the functions obtained at step (i) for
η = η∗. It follows that (uη∗ ,ση∗) is a solution of problem (9.5.23)–(9.5.25)
and, thus, we obtain the existence part in Theorem 9.5.2.

(iv) Uniqueness. The uniqueness of the solution follows from the unique-
ness of the fixed point of the operator Λ. Alternatively, it can be shown to
follow directly from (9.5.14)–(9.5.16), by using (6.4.8), (6.4.9) and Lemma
6.3.11. �
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PVvp−b1 and PVvp−b2 are two different, but equivalent, variational formula-
tions of the mechanical problem (9.5.1)–(9.5.6), as we establish next.

Theorem 9.5.3. Assume that (6.4.8), (6.4.9), (7.3.7), (7.3.8), and (9.5.8)
hold. Let u ∈ W 1,∞(0, T ;V1) and σ ∈ W 1,∞(0, T ;Q1). Then, the pair (u,σ)
is the solution of the variational problem PVvp−b1 if and only if it is the solution
of problem PVvp−b2.

Theorems 9.5.1 and 9.5.2 furnish the unique solvability of problems PVvp−b2
and PVvp−b2, respectively, while Theorem 9.5.3 expresses their equivalence.
We conclude that the mechanical problem (9.5.1)–(9.5.6) has a unique weak
solution

which solves both Problems PVvp−b1 and PVvp−b2.
The variational analysis of the mechanical problem PVvp−b including The-

orems 9.5.1–9.5.3 can be found in [225]. The existence of a solution to the
bilateral viscoplastic contact problem with regularized Coulomb friction was
recently obtained in [220]. There, the friction functional j was assumed to
depend on the regularized normal stress too, which introduced a severe math-
ematical difficulty in the analysis of the model; this difficulty was overcome
by using the Schauder fixed-point theorem and arguments similar as those
presented in the proof of Theorem 9.3.1.

9.6 Contact with Dissipative Friction Potential

In this section we extend some of the results in Sect. 9.5 to the case when
friction is modelled by a general velocity dependent dissipation functional, as
in Sect. 7.4. We note that here the functional j is not a continuous seminorm
on the space of admissible velocity fields and, thus, the arguments used in
the proof of Theorem 9.5.1 do not apply. Moreover, since j(2v) �= 2j(v),
it is not possible to derive a dual variational formulation similar to that in
Sect. 9.5. Therefore, we consider only the primal variational formulation of
the mechanical problem, and we use a result of [206] to prove the existence of
a unique weak solution to the model. The results of this section were obtained
in [23], where the full details can be found.

The classical formulation of the problem is the following.

Problem Pvp−d. Find a displacement field u : Ω × [0, T ] → R
d and a stress

field σ : Ω × [0, T ] → S
d such that

σ̇ = Avpε(u̇) + Gvp(σ, ε(u)) in ΩT , (9.6.1)
Div σ + fB = 0 in ΩT , (9.6.2)

u = 0 on ΓD × (0, T ), (9.6.3)
σn = fN on ΓN × (0, T ), (9.6.4)

u ∈ U, −σ n · (v − u̇) ≤ ϕ(v) − ϕ(u̇)
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∀v ∈ U on ΓC × (0, T ), (9.6.5)
u(0) = u0, σ(0) = σ0 in Ω. (9.6.6)

Here, frictional contact is modelled with the subdifferential boundary condi-
tions (9.6.5) in which U represents the set of admissible test functions and ϕ
is the given potential function. Examples of inequality problems in contact
mechanics which lead to boundary conditions of this form can be found in
Sect. 7.4.

We suppose that U ⊂ H1(Ω)d, ϕ : ΓC × R
d → (−∞,∞] and use (7.4.7)

and (7.4.8). We denote by D(j) the effective domain of j, i.e., D(j) = {v ∈
U1 : j(v) < ∞}, and use on U1 the inner product (·, ·)V , defined in (6.2.5).
We assume in the sequel that (7.4.9)–(7.4.11) hold and the functions Avp and
Gvp satisfy conditions (6.4.8) and (6.4.9), respectively.

Next, for each instant t ∈ [0, T ], let

F (t,v) =
∫
Ω

fB(t) · v dx+
∫
ΓN

fN (t) · v dS ∀v ∈ U1,

and
Σ(t) =

{
τ ∈ Q : (τ , ε(v))Q + j(v) ≥ F (t,v) ∀v ∈ D(j)

}
.

Finally, we assume that the initial data satisfy

u0 ∈ U1, σ0 ∈ Σ(0). (9.6.7)

It is straightforward to show that when (u,σ) are smooth functions sat-
isfying (9.6.2)–(9.6.5), then, for all t ∈ [0, T ], u(t) ∈ U1 and

(σ(t), ε(v) − ε(u̇(t)))Q + j(v) − j(u̇(t)) ≥ F (t,v − u̇(t)), (9.6.8)

for all v ∈ U1. Using (9.6.1), (9.6.8) and (9.6.6) we obtain the following
variational formulation of the mechanical problem (9.6.1)–(9.6.6).

Problem PVvp−d. Find a displacement field u : [0, T ] → U1 and a stress
field σ : [0, T ] → Q1 such that

σ̇(t) = Avpε(u̇(t)) + Gvp(σ(t), ε(u(t))), a.e. t ∈ (0, T ), (9.6.9)

(σ(t), ε(v) − ε(u̇(t)))Q + j(v) − j(u̇(t))
≥ F(t,v − u̇(t)) ∀v ∈ U1, a.e. t ∈ (0, T ), (9.6.10)

u(0) = u0, σ(0) = σ0. (9.6.11)

The following existence and uniqueness result was proved in ( [23]).

Theorem 9.6.1. Assume (6.4.8), (6.4.9), (7.4.9)–(7.4.11), and (9.6.7). Then,
there exists a unique solution for Problem PVvp−d and it satisfies

u ∈ W 1,2(0, T ;U1), σ ∈ W 1,2(0, T ;Q1).
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Proof. The proof was carried out in several steps and was based on Theo-
rem 7.5.2 and a fixed-point argument similar to the one used in Sects. 9.1
and 9.5. �

We end this section by recalling that examples of contact and friction laws
which lead to an inequality of the form (9.6.5), such that (7.4.9) and (7.4.10)
hold, were presented in Sect. 7.4. We conclude by Theorem 9.6.1 that the
relevant boundary value problems in the study of the viscoplastic materials
for each of the examples have unique weak solutions.



10 Slip or Temperature Dependent
Frictional Contact

The frictional contact problems which have been described up to now con-
tained a constant friction coefficient, although, as was described in Sect. 2.7,
in many applications it depends on the slip speed, on the temperature, and
on other factors. In this chapter we address this issue and present models
of frictional contact when the coefficient of friction depends on the slip, slip
rate, or on the process history via the total slip rate.

Quasistatic problems with slip dependent friction can be found in [21,226,
227]. A model for an elastic material with prescribed normal pressure and
slip dependent friction coefficient is described in Sect. 10.1. The proof of the
the existence of a solution is provided in Sect. 10.2, and it is based on recent
results for abstract evolutionary variational inequalities. Models for viscoelas-
tic materials with friction coefficient that depends on the slip rate or on the
accumulated slip, i.e., the process history, are described in Sect. 10.3. The
existence of the unique weak solution is shown under a smallness assumption
on the friction coefficient.

We also describe contact problems which include thermal effects, that
usually accompany frictional contact, and consider thermoelastic or thermo-
viscoelastic material constitutive laws, and include the heat equation for the
temperature. Indeed, frictional contact is very often associated with frictional
heat generation, which may be considerable, such as the heat generated when
one applied the brakes of a car. It also plays an important role in orthopaedic
biomechanics [228,229]. The frictionless problem for a thermoelastic material
and the Signorini contact condition is presented in Sect. 10.4. The existence
of a weak solution is obtained under the assumption that the thermal expan-
sion coefficients are sufficiently small. Thermoviscoelastic bilateral frictional
contact problem is presented in Sect. 10.5, and the existence of the unique
solution is stated when the friction coefficient is sufficiently small.

The only mathematical publication that we are aware of, where the fric-
tional contact problem for a thermoviscoelastic material with temperature
dependent friction coefficient was investigated, is [42].

We use dimensionless variables in this chapter.

M. Shillor, M. Sofonea, J.J. Telega: Models and Analysis of Quasistatic Contact, Lect. Notes
Phys. 655, (2001), 163–182
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004
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10.1 Elastic Contact with Slip Dependent Friction

In this section the body is assumed linearly elastic. The contact is with fric-
tion and is modelled with a condition in which the normal stress on the
contact surface is prescribed, and the coefficient of friction depends on the
slip. Although, usually, the friction coefficient is assumed to depend on the
slip rate, as has been mentioned in Sect. 2.7, in some publications in geology
the friction coefficient is assumed to depend on the slip. This is the case when
the slip rate is constant, and then the slip is just a multiple of the slip rate.

The model for the process is as follows.

Problem Pel−slip. Find a displacement field u : Ω× [0, T ] → R
d and a stress

field σ : Ω × [0, T ] → S
d such that

σ = Belε(u) in ΩT , (10.1.1)
Div σ + fB = 0 in ΩT , (10.1.2)

u = 0 on ΓD × (0, T ), (10.1.3)
σn = fN on ΓN × (0, T ), (10.1.4)

σn = −SC ,
‖στ‖ ≤ µ(‖uτ‖)SC ,

στ = −µ(‖uτ‖)SC
u̇τ

‖u̇τ‖
if u̇τ �= 0




on ΓC × (0, T ), (10.1.5)

u(0) = u0 in Ω. (10.1.6)

Some comments on the contact conditions (10.1.5) are in order. The first
condition in (10.1.5) states that the normal stress σn is prescribed on the
contact surface, and given by SC ≥ 0. Such a condition was used in [5, 47],
among others. It makes sense in a situation where the real contact area is
close to the nominal one, and the surfaces are conforming. Then SC is the
contact pressure and is given by the ratio of the total applied force to the
total nominal contact area. It also seems to be a good approximation when
the load is very light and the contact force is transmitted by the asperity tips
only.

The coefficient of friction µ in the law of dry friction in (10.1.5) is assumed
to depend on the slip ‖uτ‖, see, e.g., [106]. Such dependence was employed
in [78] in order to take into account the changes in the structure of the contact
surface that result from sliding. It was used afterwards in various papers (see,
e.g. [76, 230] and the references therein) in models for earthquakes. In these
applications, usually, the slip velocity has a single direction and a single sense
during the slip and, therefore, there is a direct relation between the slip, the
slip rate and the total slip rate, (see for instance [11] and [76]).

The static version of the model (10.1.1)–(10.1.6) was considered in [230].
There, the existence of a weak solution for the problem was proved by using
a theorem of the Weierstrass type, based on lower semicontinuity arguments.
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The uniqueness of the solution was derived under the additional assumption
of inequality between two scalar parameters: one related to the geometry and
the elastic coefficients of the material, and the other one was a measure of
the slip weakening and the normal stress.

In the study of the mechanical problem (10.1.1)–(10.1.6) we assume that
the elasticity tensor Bel satisfies condition (6.4.2), the force and the traction
densities satisfy (7.3.7), and the given normal stress is such that

SC ∈ L∞(ΓC), SC ≥ 0 a.e. on ΓC . (10.1.7)

The coefficient of friction is nonnegative and Lipschitz, and satisfies:

(a) µ : ΓC × R+ −→ R+.

(b) There exists Lµ > 0 such that
|µ(x, r1) − µ(x, r2)| ≤ Lµ|r1 − r2|,
∀ r1, r2 ∈ R+, a.e. x ∈ ΓC .

(c) For any r ∈ R+, x �→ µ(x, r) is measurable on ΓC .

(d) The mapping x �→ µ(x, 0) ∈ L2(ΓC).




(10.1.8)

We note that assumptions (10.1.8) on the coefficient of friction are fairly
general, but are different from those considered in [230], where µ was assumed
to be bounded and continuously differentiable with respect to the second
argument. However, to obtain the existence result below, we need to impose
an additional smallness assumption on µ, which was not needed in the static
case treated in [230].

To prove the uniqueness of the solution we need to replace (10.1.8) with
the following stronger condition, in which we assume that µ does not depend
on the slip ‖uτ‖. We assume that µ is a given function that satisfies

µ ∈ L2(ΓC), µ ≥ 0 a.e. on ΓC . (10.1.9)

Next, we consider the bilinear form a : V × V → R given in (7.3.9) and
the friction functional j : V × V → R given by

j(η,v) =
∫
ΓC

µ(‖ητ‖)SC ‖vτ‖ dS. (10.1.10)

Recall that V is the space of displacements (6.2.3), a real Hilbert space with
the inner product (6.2.5). Let F : [0, T ] → V be given by

(F(t),v)V =
∫
Ω

fB(t) · v dx+
∫
ΓN

fN (t) · v dS −
∫
ΓC

SCvn dS, (10.1.11)

for all v ∈ V and t ∈ [0, T ], and clearly F ∈ W 1,∞(0, T ;V ).
We assume that the initial data satisfies
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u0 ∈ V, (10.1.12)

a(u0,v) + j(u0,v) ≥ (F(0),v)V ∀v ∈ V. (10.1.13)

The second condition guarantees the compatibility of the initial displacements
and the forces F at t = 0, which is needed in quasistatic problems.

A straightforward application of the Green formula (6.2.11) yields the
following variational formulation of the contact problem (10.1.1)–(10.1.6).

Problem PVel−slip. Find a displacement field u : [0, T ] → V such that

a(u(t),v − u̇(t)) + j(u(t),v) − j(u(t), u̇(t)) (10.1.14)
≥ (F(t),v − u̇(t))V ∀v ∈ V, a.e. t ∈ (0, T ),

u(0) = u0. (10.1.15)

The existence and the possible uniqueness of solutions for problem PVel−slip,
using the two different assumptions on the friction coefficient, is described in
the following theorem due to [227].

Theorem 10.1.1. Assume that conditions (6.4.2), (7.3.7), (10.1.7), (10.1.12)
and (10.1.13) hold. Then,

1) Under the assumption (10.1.8), there exists L0 > 0, depending only on Ω,
ΓD, ΓC and Bel, such that if Lµ‖SC‖L∞(ΓC) < L0 then problem PVel−slip has
at least one solution u, such that u ∈ W 1,∞(0, T ;V ).

2) Under assumption (10.1.9), there exists a unique solution u of problem
PVel−slip, and u ∈ W 1,∞(0, T ;V ). Moreover, the mapping (F,u0) �−→ u is
Lipschitz continuous from W 1,∞(0, T ;V ) × V to L∞(0, T ;V ).

The proof of Theorem 10.1.1 is given in Sect. 10.2. Further details and
additional results in the study of Problem Pel−slip can be found in [227].

We note that Theorem 10.1.1 guarantees the solvability of the mechanical
problem Pel−slip under the smallness assumption Lµ‖SC‖L∞(ΓC) < L0. Here,
L0 represents a scalar parameter which depends only on the elasticity opera-
tor and on the geometry of the problem, but does not depend on the external
forces, nor on the initial displacements. From the mathematical point of view
the inequality Lµ‖SC‖L∞(ΓC) < L0 represents a sufficient condition for the
solvability of the variational problem PVel−slip, and it is needed for the appli-
cation of the abstract result on evolutionary variational inequalities provided
by Theorem 10.2.1 below. From the mechanical point of view this inequality
shows that problem Pel−slip has a solution if either the slip weakening or the
given normal stress on the contact surface are sufficiently small. A similar
condition was used in [230] in order to derive the uniqueness of the solu-
tion in the static model. We also note that if the coefficient of friction does
not depend on the slip (i.e., assumption (10.1.8) is replaced by the stronger
condition (10.1.9)), then Theorem 10.1.1 guarantees the unique solvability of
problem Pel−slip.
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10.2 Proof of Theorem 10.1.1

To prove Theorem 10.1.1 we need the following abstract result on evolution-
ary variational inequalities.

Let X be a real Hilbert space endowed with the inner product (·, ·)X and
the associated norm ‖ · ‖X , and we denote by 0X the zero element of X. We
consider the abstract evolutionary inequality

a(u(t), v − u̇(t)) + j(u(t), v) − j(u(t), u̇(t)) (10.2.1)
≥ (f(t), v − u̇(t))X ∀ v ∈ X, a.e. t ∈ (0, T ),

u(0) = u0, (10.2.2)

in which the unknown is the function u : [0, T ] → X.
In the study of (10.2.1)–(10.2.2) we consider the following assumptions:

The bilinear symmetric form a : X ×X → R satisfies

(a) there exists M > 0 such that
|a(u, v)| ≤ M‖u‖X‖v‖X ∀u, v ∈ X.

(b) there exists m > 0 such that a(v, v) ≥ m‖v‖2
X ∀v ∈ X.


 (10.2.3)

The functional j : X × X → R is positively homogeneous and subadditive
for every η ∈ X, j(η, ·) : X → R i.e.,

(a) j(η, λu) = λj(η, u) ∀u ∈ X, λ ∈ R+.

(b) j(η, u+ v) ≤ j(η, u) + j(η, v) ∀u, v ∈ X.

}
(10.2.4)

f ∈ W 1,∞(0, T ;X). (10.2.5)

u0 ∈ X. (10.2.6)

a(u0, v) + j(u0, v) ≥ (f(0), v)X ∀v ∈ X. (10.2.7)

It follows from (10.2.4) that the functional j(η, ·) : X → R is convex for
each η ∈ X. Therefore, the directional derivative j′

2, given by

j′
2(η, u; v) = lim

λ→0+

1
λ

(j(η, u+ λv) − j(η, u)) ∀η, u, v ∈ X, (10.2.8)

exists.
We consider now the following additional assumptions on j:

(j1) For every sequence {un} ⊂ X with ‖un‖X → ∞, every sequence {tn} ⊂
[0, 1], and each u ∈ X, one has

lim inf
n→∞

(
1

‖un‖2
X

j′
2(tnun, un − u; −un)

)
< m.



168 10 Slip or Temperature Dependent Frictional Contact

(j2) For every sequence {un} ⊂ X with ‖un‖X → ∞, every bounded se-
quence {ηn} ⊂ X, and each u ∈ X, it holds

lim inf
n→∞

(
1

‖un‖2
X

j′
2(ηn, un − u; −un)

)
< m.

(j3) For every sequence {un} ⊂ X and {ηn} ⊂ X such that un → u weakly
in X, ηn → η weakly in X, and for every v ∈ X, one has

lim sup
n→∞

(j(ηn, v) − j(ηn, un)) ≤ j(η, v) − j(η, u).

(j4) There exists c0 ∈ (0,m) such that

j(u, v − u) − j(v, v − u) ≤ c0‖u− v‖2
X ∀u, v ∈ X.

(j5) There exist two functions e1 : X → R and e2 : X → R which map
bounded sets in X into bounded sets in R such that

|j(η, u)| ≤ e1(η)‖u‖2
X + e2(η) ∀η, u ∈ X, e1(0X) < m− c0.

(j6) For every sequence {ηn} ⊂ X with ηn → η weakly in X, and every
bounded sequence {un} ⊂ X, one has

lim
n→∞ (j(ηn, un) − j(η, un)) = 0.

(j7) For every s ∈ (0, T ] and every pair of functions u, v ∈ W 1,∞(0, T ;X)
such that u(0) = v(0), and u(s) �= v(s),∫ s

0
(j(u(t), v̇(t)) − j(u(t), u̇(t)) + j(v(t), u̇(t)) − j(v(t), v̇(t))) dt

<
m

2
‖u(s) − v(s)‖2

X .

(j8) There exists q ∈ (0,m/2) such that for every s ∈ (0, T ] and for every
pair of functions u, v ∈ W 1,∞(0, T ;X) such that u(s) �= v(s),∫ s

0
(j(u(t), v̇(t)) − j(u(t), u̇(t)) + j(v(t), u̇(t)) − j(v(t), v̇(t))) dt

< q‖u(s) − v(s)‖2
X .

The following result has been obtained in [202].

Theorem 10.2.1. Let (10.2.3)–(10.2.7) hold. Then,
(i) Under the assumptions (j1)–(j6) there exists at least one solution u ∈
W 1,∞(0, T ;X) to problem (10.2.1)–(10.2.2).

(ii) Under the assumptions (j1)–(j7) there exists a unique solution
u ∈ W 1,∞(0, T ;X) to problem (10.2.1)–(10.2.2).

(iii) Under the assumptions (j1)–(j6) and (j8) there exists a unique solution
u = u(f, u0) ∈ W 1,∞(0, T ;X) to problem (10.2.1)–(10.2.2), and the mapping
(f, u0) �−→ u is Lipschitz continuous from W 1,∞(0, T ;X)×X to L∞(0, T ;X).
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We use Theorem 10.2.1 to prove Theorem 10.1.1. The proof will be carried
out in several steps. We assume that (6.4.2), (7.3.7), (10.1.7), (10.1.12), and
(10.1.13) hold and we use m to denote the coercivity constant of the form
a, see (10.2.17) below. We recall (see page 89) that unτ and ηnτ denote the
tangential components of the elements un, ηn ∈ V .

We begin by investigating the properties of the friction functional j, given
by (10.1.10), and which satisfies (10.2.4). We have the following results.

Lemma 10.2.2. The functional j satisfies assumptions (j1) and (j2).

Proof. Let η, u, u ∈ V and let λ ∈ (0, 1]. Using (10.1.10), it follows that

j(η,u − u − λu) − j(η,u − u) ≤ λ

∫
ΓC

µ(‖ητ‖)SC ‖uτ‖ dS.

Therefore, we obtain from (10.2.8)

j′
2(η,u − u; −u) ≤

∫
ΓC

µ(‖ητ‖)SC ‖uτ‖ dS ∀η,u,u ∈ V. (10.2.9)

We now consider the sequences {un} ⊂ V , {tn} ⊂ (0, 1], and let u ∈ V . Using
(6.2.9), (10.1.7), (10.1.8) and (10.2.9), we find

j′
2(tnun,un − u; −un) ≤

∫
ΓC

(Lµ‖unτ‖ + |µ(0)|)SC ‖uτ‖ dS

≤ cB‖SC‖L∞(ΓC)(cBLµ‖un‖V + ‖µ(0)‖L2(ΓC))‖u‖V .

It follows that if ‖un‖V → ∞ then

lim inf
n→∞

(
1

‖un‖2
V

j′
2(tnun,un − u; −un)

)
≤ 0,

and we conclude that j satisfies assumption (j1).
Consider now the sequences {un} ⊂ V and {ηn} ⊂ V such that

‖un‖V → ∞, (10.2.10)

‖ηn‖V ≤ c ∀n ∈ N, (10.2.11)

where c > 0. Let u ∈ V . Using (6.2.9) again, (10.1.8) and (10.2.9), we obtain

j′
2(ηn,un − u; −un) (10.2.12)

≤ cB‖SC‖L∞(ΓC)

(
cBLµ‖ηn‖V + ‖µ(0)‖L2(ΓC)

)
‖u‖V ∀n ∈ N.

We conclude from (10.2.10)–(10.2.12) that j satisfies assumption (j2). �

Lemma 10.2.3. The functional j satisfies assumptions (j3) and (j6).
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Proof. Let {un} ⊂ V and {ηn} ⊂ V be two sequences such that un → u
weakly in V and ηn → η weakly in V . Using the compactness of the trace
map and assumption (10.1.8), we obtain

µ(‖ηnτ‖) → µ(‖ητ‖) in L2(ΓC), (10.2.13)

un → u in L2(ΓC)d. (10.2.14)

Therefore, it follows from (10.2.13) and (10.2.14) that j(ηn,v) → j(η,v) for
all v ∈ V and j(ηn,un) → j(η,u), and these show that the functional j
satisfies (j3).

Now, let {un} be a bounded sequence of V , i.e.,

‖un‖V ≤ c ∀n ∈ N, (10.2.15)

where c > 0. We have

|j(ηn,un) − j(η,un)| ≤
∫
ΓC

SC

(
µ(‖ηnτ‖) − µ(‖ητ‖)‖unτ‖

)
dS

and, using (6.2.9) and (10.1.7), we deduce

|j(ηn,un) − j(η,un)| ≤
cB‖SC‖L∞(ΓC)

∥∥µ(‖ηnτ‖) − µ(‖ητ‖)
∥∥
L2(ΓC)‖un‖V .

It follows now from (10.2.13) and (10.2.15) that j satisfies condition (j6). �

Lemma 10.2.4. The functional j satisfies assumption (j5), for all c0 ∈
(0, m]. Moreover,

j(u,v−u)−j(v,v−u) ≤ Lµc2B‖SC‖L∞(ΓC)‖u−v‖2
V ∀u,v ∈ V. (10.2.16)

Proof. Let η,u ∈ V . Using (10.1.8) and (10.1.7) it follows that

|j(η,u)| ≤
∫
ΓC

SCµ(‖ητ‖)‖uτ‖ dS

≤ ‖SC‖L∞(ΓC)

(
Lµ‖ητ‖L2(ΓC)d + ‖µ(0)‖L2(ΓC)

)
‖uτ‖L2(ΓC)d ,

and, keeping in mind (6.2.9), we find

|j(η,u)| ≤ cB‖SC‖L∞(ΓC)
(
LµcB‖η‖V + ‖µ(0)‖L2(ΓC)

)
‖u‖V .

We use now the Cauchy inequality with ε, ab ≤ a2

2ε + εb2

2 for ε > 0, and find
that condition (j5) holds for all c0 ∈ (0, m].

Let u,v ∈ V , and by using (10.1.8) and (10.1.7), again, we find that

j(u,v − u) − j(v,v − u) =
∫
ΓC

SC

(
µ(‖uτ‖) − µ(‖vτ‖)

)
‖uτ − vτ‖ dS

≤ Lµ‖SC‖L∞(ΓC)

∫
ΓC

‖u − v‖2 dS.

This inequality and (6.2.9) imply (10.2.16). �
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We have now all the ingredients needed to prove Theorem 10.1.1.

Proof (Theorem 10.1.1). (i) It follows from (6.4.2) that the bilinear form a,
defined in (7.3.9), is symmetric and coercive with the constant m = mel, i.e.,

a(v,v) ≥ mel‖v‖2
V ∀v ∈ V. (10.2.17)

Let L0 = mel/c
2
B . Clearly, L0 depends only on Ω, ΓD, ΓC and Ael. Assume

now that Lµ‖SC‖L∞(ΓC) < L0. Then, there exits c0 ∈ R such that

Lµc2B‖SC‖L∞(ΓC) < c0 < mel.

Using (10.2.16), we obtain

j(u,v − u) − j(v,v − u) ≤ c0‖u − v‖2
V ∀u,v ∈ V.

We conclude that the functional j satisfies condition (j4). Using now Lemmas
10.2.2–10.2.4, conditions (10.1.12)–(10.1.13), the fact that F ∈ W 1,∞(0, T ;V )
and part (i) of Theorem 10.2.1, we deduce that Problem PVel−slip has at least
one solution u ∈ W 1,∞(0, T ;V ).

(ii) Let (10.1.9) hold, and so the functional j does not depend on the the
first argument and, therefore, assumptions (j7) and (j8) hold. The conclusion
follows now from parts (ii) and (iii) of Theorem 10.2.1. �

10.3 Viscoelastic Contact
with Total Slip Rate Dependent Friction

We follow [21] and describe a problem of bilateral frictional contact between a
viscoelastic material and a foundation, when the friction coefficient depends
on the slip rate or on the total slip rate, i.e., when it depends on the history
of the contact process. Here, we describe only the problem with the latter
condition, since the analysis of the problem with slip rate dependence is
somewhat simpler. We recall that ‘bilateral’ means that there is no separation
of the body from the foundation at any point of ΓC .

We begin with the definition of the total slip rate operator. For v ∈
C([0, T ];H1(Ω)d) we denote by δt(v) the element of L2(ΓC) given by

δt(v) =
∫ t

0
‖vτ (s)‖ ds a.e. on ΓC ,

for t ∈ [0, T ]. We note that when v is the surface velocity, δt(v) represents
the total or accumulated slip rate, while δt(u), where u is the surface dis-
placement, represents the total or accumulated slip. Since the wear of the
contacting surfaces depends on the friction traction, which in turn depends
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on the total slip rate, we use δt(v) as an argument of µ. This takes into ac-
count the accumulated wear or other morphological changes of the surface.
If one wishes to investigate the problem with accumulated slip δt(u) should
be used. All the results below hold true for the latter case, and the proofs
are slightly simpler.

We assume that the material is viscoelastic, its constitutive law is given
by (6.4.3),

σ = Aveε(u̇) + Bveε(u).

As above, both the viscosity operator Ave and the elasticity operator Bve
depend on the location, although we do not show this explicitly, and satisfy
conditions (6.4.4) and (6.4.5), respectively.

We assume that the friction coefficient µ depends on the total slip rate as
well as on the position x ∈ ΓC , thus,

µ = µ(x, δt(u̇)),

on ΓC×(0, T ), and we do not depict the dependence on x explicitly. Since we
deal with bilateral contact we need to regularize the contact stress, using the
regularization operator R (page 127) and we use the friction bound (2.6.11),
i.e.,

H = H(δt(u̇), σn) = µ(δt(u̇))|Rσn|(1 − δ|Rσn|)+.

The classical formulation of the frictional bilateral contact problem with
total slip rate dependent friction coefficient is the following.

Problem Pve−slip. Find a displacement field u : Ω× [0, T ] → R
d and a stress

field σ : Ω × [0, T ] → S
d such that

σ = Ave(ε(u̇)) + Bve(ε(u)) in ΩT , (10.3.1)
Div σ + fB = 0 in ΩT , (10.3.2)

u = 0 on ΓD × (0, T ), (10.3.3)
σn = fN on ΓN × (0, T ), (10.3.4)

un = 0,
‖στ‖ ≤ H(δt(u̇), σn),

στ = −H(δt(u̇), σn)
u̇τ

‖u̇τ‖
if u̇τ �= 0




onΓC × (0, T ), (10.3.5)

u(0) = u0 in Ω. (10.3.6)

We proceed to the variational formulation of the problem. To this end we
use the space (6.2.7), endowed with the inner product (6.2.5).

In the study of the contact problem (10.3.1)–(10.3.6) we assume that the
friction coefficient satisfies
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(a) µ : ΓC × R+ → R+.

(b) There exists Lµ > 0 such that
|µ(x , r1) − µ(x , r2)| ≤ Lµ|r1 − r2|
∀ r1, r2 ∈ R+, a.e. x ∈ ΓC .

(c) For all r ∈ R+, x �→ µ(x, r) is measurable on ΓC .

(d) There exists µ� > 0 such that µ(x, r) ≤ µ�

∀ r ∈ R+, a.e. x ∈ ΓC .




(10.3.7)

The forces and the tractions satisfy (8.5.9), the initial displacement satis-
fies (8.5.11) and, finally, we denote by F(t) the element of V1 given by (7.3.11)
for all v ∈ V1 and t ∈ [0, T ].

Let j : [0, T ] × C([0, T ];V1) ×Q1 × V1 → R be the friction functional

j(t,u,σ,w) =
∫
ΓC

µ(δt(u))|Rσn|(1 − δ|Rσn|)+‖wτ‖ dS.

We note that if (u,σ) is a sufficiently regular solution of problem Pve−slip
then

(σ(t), ε(w) − ε(u̇(t)))Q + j(t, u̇,σ(t),w) − j(t, u̇,σ(t), u̇(t))
≥ (F(t),w − u̇(t))V ∀w ∈ V1, t ∈ [0, T ]. (10.3.8)

We obtain from (10.3.1), (10.3.6), and (10.3.8) the following variational for-
mulation of problem (10.3.1)–(10.3.6).

Problem PVve−slip. Find a displacement field u : [0, T ] → V1 and a stress
field σ : [0, T ] → Q1 such that u(0) = u0, and for all t ∈ [0, T ]

σ(t) = Ave(ε(u̇(t))) + Bve(ε(u(t))),

and (10.3.8) hold.

The main result established in [21], based on the Banach fixed-point the-
orem, is the following.

Theorem 10.3.1. Assume that (6.4.4), (6.4.5), (8.5.9), (8.5.11), and (10.3.7)
hold. Then, there exists µ0 > 0, which depends only on Ω, ΓD, ΓC and Ave,
such that if µ� ≤ µ0, then there exists a unique solution (u,σ) of problem
PVve−slip. Moreover, the solution satisfies (8.5.22).

We conclude that problem (10.3.1)–(10.3.6) has a unique weak solution
(u,σ) provided that µ is sufficiently small. We note that in this case we
needed to regularize the normal stress and the result holds for small friction
coefficient. The question whether the size restriction is due to the mathe-
matical method or is an intrinsic feature of the problem is an open question.
However, as has been mentioned on several occasions, it is well known that
some friction problems do exhibit considerable difficulties, both mathematical
and experimental, when the friction coefficient is not small.
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10.4 Thermoelastic Contact with Signorini’s Condition

We first present the results for the n-dimensional thermoelastic frictionless
contact problem, following [39]. The setting is the same as in Fig. 1, and
although all the results below hold for d = 1, 2, for the sake of simplicity
we consider here the three-dimensional case. Therefore, in this section the
indices i, j, k, l have values in the set {1, 2, 3}.

Let θ and u denote the temperature and displacement fields of the body,
respectively. As a result of the applied forces fB , surface tractions fN , and
heat sources qth and the resulting thermal expansion, the body’s thermome-
chanical state evolves in time. We assume that the body is thermoelastic,
with linear constitutive relation

σ = Belε(u) − Mθ,

in components,
σij = bijklε(u)kl −mijθ.

Here, the bijkl are the components of the elasticity tensor Bel and mij are
the components of the second-order thermal expansion tensor M. We allow
for a nonhomogeneous and anisotropic material, therefore, the coefficients are
functions of position, and there may be up to 21 independent components in
Bel and six in M, taking the necessary symmetries into account. In particular,
M is a symmetric tensor, and in the isotropic case it is represented by only
one number, the coefficient of thermal expansion α, i.e., M = αI3, where I3
is the 3 × 3 identity matrix.

We assume that the process is slow, the accelerations are negligible and
the quasistatic approximation applies. The energy equation is given by

θ̇ − (kij θ,i),j = −mijΘref u̇i,j + qth in ΩT . (10.4.1)

Here, the kij are the components of the thermal conductivity tensor K, which
is symmetric. The first term on the right-hand side of (10.4.1) represents
the (linearized) internal heat generated by the work of elastic deformations,
and Θref is a reference temperature, which is a positive constant and for
convenience set to be equal to one.

For the sake of simplicity we assume that the temperature on the whole
of the boundary Γ is held constant, at the ambient temperature (which is
scaled to be zero). In particular, the foundation has the constant temperature
zero, too. There is no loss of generality in this assumption, since any given
boundary temperature θbd can be incorporated by a simple change of variable.
Since we consider the frictionless case, there is no heat generated at the
contact surface.

The foundation is assumed to be rigid and, thus, the contact condition is
Signorini’s. The classical formulation of the frictionless thermoelastic unilat-
eral contact problem between a body and a rigid foundation is the following.
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Problem Pthel−S . Find a displacement field u : Ω × [0, T ] → R
3, a stress

field σ : Ω× [0, T ] → S
3, and a temperature field θ : Ω× [0, T ] → R such that

σ = Belε(u) − Mθ in ΩT , (10.4.2)

Div σ + fB = 0 in ΩT , (10.4.3)

θ̇ − div(K∇θ) = −M · ∇u̇ + qth in ΩT , (10.4.4)

θ = 0 on Γ × (0, T ), (10.4.5)
u = 0 on ΓD × (0, T ), (10.4.6)

σn = fN on ΓN × (0, T ), (10.4.7)
un ≤ g, σn ≤ 0, σn(un − g) = 0, στ = 0 on ΓC × (0, T ), (10.4.8)

θ(0) = θ0 in Ω. (10.4.9)

Here, g represents the gap between the reference configuration and the rigid
foundation (see Fig. 1 on page 11) and θ0 is the initial temperature field;
moreover ‘div’ and ∇ denote the divergence and the gradient operators for
vector-valued and scalar functions, respectively, while M · ∇u̇ = mij u̇i,j .

We now proceed to a weak formulation of the problem. To that end we
introduce the following function spaces

Vth = {u ∈ W 1,2(0, T ;V ) : ui,jk, u̇i,j ∈ L2(0, T ;L2(Ω))},

and
Hth = {θ ∈ W 1,2(0, T ;H1

0 (Ω)) : ∆θ ∈ L2(0, T ;L2(Ω))},

where we set ui,jk = ∂2ui/∂xj∂xk and u̇i,j = ∂2ui/∂xj∂t. Also, ∆ denotes
the Laplace operator and V is given in (6.2.3). Next, we define

W = Vth ×Hth.

These three spaces are real Hilbert spaces, with respective norms

‖u‖2
Vth

=
∫
ΩT


‖u̇‖2 +

3∑
i=1

‖∇ui‖2 +
3∑

i,j=1

(u̇i,j)
2 +

3∑
i,j,k=1

(ui,jk)
2


 dxdt,

‖θ‖2
Hth

=
∫
ΩT

(
θ̇2 + ‖∇θ‖2 + (∆θ)2 + θ2

)
dxdt,

and

‖(v, ξ)‖2
W =

∫
ΩT


‖v̇‖2 +

3∑
i=1

‖∇vi‖2 +
3∑

i,j=1

(v̇i,j)
2 + ξ̇2 + (∆ξ)2


 dxdt.

Next, we need the following convex subset of W ,
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KT = {(v, ξ) ∈ W : ξ(0) = θ0 in Ω, vn ≤ g on ΓC × (0, T )},
and let W ′ denote the dual of the space W . We also define the operator Athel
by

〈Athel(u, θ), (v, ξ)〉 =
∫
ΩT

(
θ̇ξ − (kijθ,j),iξ +mij u̇j,iξ

+ bijkluk,lvi,j −mijθvi,j) dxdt.

In this section 〈·, ·〉 represents the duality pairing between W ′ and W .
The weak formulation of the problem is as follows.

Problem PVthel−S . Find a pair (u, θ) ∈ KT such that

〈Athel(u, θ), (v, ξ)〉 ≥
∫
ΩT

(fB · (v − u) + qth(ξ − θ)) dxdt

+
∫
ΓN ×(0,T )

fN · (v − u) dSdt, (10.4.10)

for all (v, ξ) ∈ KT .

We make the following assumptions on the problem data:

bijkl ∈ L∞(Ω), mij ∈ W 1,∞(Ω), kij ∈ W 1,∞(Ω). (10.4.11)

bijkl = bjikl = bklij ,

bijklξklξij ≥ b∗ξijξij ∀ξ = (ξij) ∈ S
3. (10.4.12)

mij = mji, 0 ≤ mij ≤ m∗. (10.4.13)

kij = kji, kijzjzi ≥ k∗zizi ∀z = (zi) ∈ R
3. (10.4.14)

fB ∈ W 1,2(0, T ;L2(Ω)3). (10.4.15)

fN ∈ W 1,2(0, T ;L2(ΓN )3). (10.4.16)

qth ∈ L2(0, T ;L2(Ω)). (10.4.17)

g ∈ L2(ΓC), g ≥ 0 a.e. on ΓC . (10.4.18)

θ0 ∈ H1
0 (Ω). (10.4.19)

Here, b∗, m∗, and k∗ are positive constants.

The following existence result has been established in [39].
Theorem 10.4.1. Under the assumptions (3.4.13–23) problem PVthel−S has
a solution, provided m∗ is sufficiently small.
The proof was based on the Schauder fixed-point theorem, which led to the
size restriction on the thermal expansion bound m∗. The size restriction on
m∗ has been removed in [40]. We conclude by Theorem 10.4.1 that Problem
Pthel−S has at least one weak solution, however, the uniqueness remains an
unresolved question.
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10.5 Thermoviscoelastic Bilateral Contact

We consider, following [130], a thermoviscoelastic body in frictional bilat-
eral contact with a rigid moving foundation. We assume that the contact is
maintained at all times, which is the case in many engineering systems. The
rigid foundation moves with a prescribed tangential velocity v∗ = v∗(t), and
this motion is accompanied by frictional heat generation on the part of the
contact surface where relative slip takes place. As above, it is assumed that
the body is acted upon by volume forces fB and surface tractions fN , and
may have a volume heat source of density qth.

We assume that the material is linearly thermoviscoelastic, with consti-
tutive relation

σ = Aveε(u̇) + Bveε(u) − Mθ,

in components,
σij = aijklu̇k,l + bijkluk,l −mijθ.

Here, the aijkl are the components of the viscosity tensor Ave, the bijkl are
the components of the elasticity tensor Bve and the mij are the components
of the thermal expansion tensor M.

The contact is assumed bilateral, thus un = 0 on ΓC × (0, T ). We employ
the space V1, (6.2.7), and denote by V ′

1 its dual. To describe the friction
condition we use the smoothing operator R (which was described in Sect. 8.5),
so that Rσn makes sense on ΓC . The friction bound H(σn) is given by

H(σn) = µ|Rσn|(1 − δ|Rσn|)+, (10.5.1)

where the friction coefficient µ is assumed to be a constant, and δ is a small
surface material parameter. Then, we describe friction on ΓC by

‖στ‖ ≤ H(σn),

and
στ = −H(σn)

u̇τ − v∗

‖u̇τ − v∗‖ if u̇τ �= v∗.

We assume that the temperature on the part of the surface ΓD ∪ ΓN is
given, while on ΓC the heat flux condition, which includes frictional heat
generation, is specified. The latter depends on the friction bound H and on
the relative slip speed, and is in the form

kijθ,i nj = H(σn)‖u̇τ − v∗‖ − ke(θ − θR),

where the first term on the right-hand side describes the heat generated
by friction, and the second term represents heat exchange between the body
and the foundation. The coefficient of heat exchange ke is assumed a positive
constant, and the foundation’s temperature θR is assumed to be known.

For technical reasons we replace the term ‖u̇τ − v∗‖ with a regularized
term sc(‖u̇τ − v∗‖), where sc is a bounded Lipschitz function which may
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depend on the position x ∈ ΓC . The mathematical reason for this is the
need to control the term when ‖u̇τ − v∗‖ → ∞, and therefore, in each spe-
cific application we may use sc(‖u̇τ − v∗‖) = ‖u̇τ − v∗‖, up to a sufficiently
high limit, and then assume it to be constant. This restriction is purely for
mathematical reasons. From the applied point of view there is no real loss
of generality by such a choice, since one can set the limit so high that the
system under investigation cannot reach it.

The classical model for the process of quasistatic thermoviscoelastic bi-
lateral contact with friction and frictional heat generation is as follows.

Problem Pthve−b. Find a displacement field u : Ω × [0, T ] → R
d, a stress

field σ : Ω× [0, T ] → S
d and a temperature field θ : Ω× [0, T ] → R such that

σ = Aveε(u̇) + Bveε(u) − Mθ in ΩT , (10.5.2)

Divσ + fB = 0 in ΩT , (10.5.3)

θ̇ − div(Kθ) = −M · ∇u̇+ qth in ΩT , (10.5.4)

u = 0 on ΓD × (0, T ), (10.5.5)
σn = fN on ΓN × (0, T ), (10.5.6)
θ = θb on (ΓD ∪ ΓN ) × (0, T ), (10.5.7)

un = 0,
‖στ‖ ≤ H(σn),

στ = −H(σn)
u̇τ − v∗

‖u̇τ − v∗‖ if u̇τ �= v∗,




on ΓC × (0, T ), (10.5.8)

kijθ,inj = H(σn)sc(‖u̇τ − v∗‖)

−ke(θ − θR) on ΓC × (0, T ), (10.5.9)

u(0) = u0, θ(0) = θ0 in Ω. (10.5.10)

Recall that H(σn) is the function given by (10.5.1). We note that although
the process is quasistatic, since the material is viscoelastic we need to specify
the initial displacements u0, in addition to the initial temperature θ0.

We proceed with the variational formulation of the problem. First, we
describe the assumptions on the problem data, then obtain the variational
formulation, derive from it an abstract formulation in terms of various oper-
ators and then state the existence and uniqueness result.

The need for the normal regularization operator R has been explained
in Sect. 8.5. It is a linear and continuous operator R : H−1/2(Γ ) → L2(Γ )
and we use it for mathematical reasons, although there may be good physical
reasons to use it, see e.g., [213]. The results below do not depend on the the
particular form of R.

We use the spaces defined in Chap. 6 and also

H1 = { η ∈ H1(Ω) : η = 0 on ΓD ∪ ΓN }.
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H1 is the subspace of H1(Ω) where we seek the solutions of the thermal
problem. It is a real Hilbert space when equipped with the inner product of
H1(Ω) and its dual will be denoted by H ′

1. Moreover, in this section, 〈·, ·〉
denotes either the duality pairing between V ′

1 and V1, or H ′
1 and H1, as is

dictated by the context.
We now describe the assumptions on the data. The problem coefficients

of elasticity, viscosity, thermal expansion, and thermal conductivity satisfy:

(a) aijkl, bijkl, mij , kij ∈ L∞(Ω).

(b) aijkl = ajikl = aklij ,
aijklξklξij ≥ c1ξijξij ∀ξ = (ξij) ∈ S

d.

(c) bijkl = bjikl = bklij ,
bijklξklξij ≥ c2ξijξij ∀ξ = (ξij) ∈ S

d.

(d) mij = mji.

(e) kij = kji, kijzjzi ≥ c3zizi ∀ z = (zi) ∈ R
d.




(10.5.11)

Here, c1, c2 and c3 are positive constants.
The body forces and the volume heat sources satisfy

fB ∈ L2(0, T ;L2(Ω)d), qth ∈ L2(0, T ;H ′
1). (10.5.12)

The friction coefficient and the velocity of the foundation satisfy

(a) µ ∈ L∞(ΓC) µ ≥ 0, a.e. on ΓC .

(b) v∗ : ΓC × [0, T ] → R
d is a continuous function.

}
(10.5.13)

The function sc satisfies

(a) sc : ΓC × R −→ R+.

(b) There exists c4 > 0 such that
|sc(x, r1) − sc(x , r2)| ≤ c4|r1 − r2|
∀ r1, r2 ∈ R, a.e. x ∈ ΓC .

(c) For all r ∈ R, x �→ sc(x, r) is measurable on ΓC .

(d) There exists c5 > 0 such that
sc(x, r) ≤ c5 ∀ r ∈ R, a.e. x ∈ ΓC .




(10.5.14)

Here, c4 and c5 are positive constants.
The assumptions on the boundary and initial data are:

(a) fN ∈ L2(0, T ;L2(ΓN )d).

(b) There exists Θ ∈ W 1,2(0, T ;H1(Ω)) such that
Θ = θb on ΓD ∪ ΓN .

(c) θR ∈ L2(0, T ;L2(ΓC)).

(d) u0 ∈ V1, θ0 ∈ L2(Ω).




(10.5.15)
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For technical reasons, it is convenient to shift the temperature function
so that it is zero on ΓD ∪ ΓN . To that end, we introduce the new shifted
temperature ξ, given by

ξ = θ −Θ,

and then ξ0 = θ0 − Θ(0). To simplify the notation, we will not indicate
explicitly the dependence on t.

We can now present the following weak formulation of problem (10.5.2)–
(10.5.10), which may be obtained in the usual way.

Find a triple (u,σ, ξ) such that:

u ∈ W 1,2(0, T ;V1), u(0) = u0, (10.5.16)

ξ ∈ L2(0, T ;H1), ξ̇ ∈ L2(0, T ;H ′
1), ξ(0) = ξ0, (10.5.17)

σ = (σij) ∈ L2(0, T ;Q1),

σij = bijkluk,l + aijklu̇k,l −mij(ξ +Θ), (10.5.18)

∫
ΩT

aijklu̇k,l(wi,j − u̇i,j) dxdt+
∫
ΩT

bijkluk,l(wi,j − u̇i,j) dxdt

−
∫
ΩT

mijξ(wi,j−u̇i,j)dxdt

+
∫
ΓC×(0,T )

µ|Rσn|
(
1 − δ|Rσn|

)
+

(
‖wτ − v∗‖ − ‖u̇τ − v∗‖

)
dSdt

≥
∫
ΩT

fB · (w − u̇)dxdt+
∫
ΩT

mijΘ(wi,j − u̇i,j)dxdt

+
∫
ΓN ×(0,T )

fN · (w − u̇) dSdt, (10.5.19)

for all w ∈ L2(0, T ;V1), and

∫ T

0
〈ξ̇, η〉 dt+

∫
ΩT

kijξ,iη,j dxdt+
∫
ΩT

mij u̇i,jη dxdt

+
∫
ΓC×(0,T )

keξη dSdt+
∫
ΩT

kijΘ,iη,j dxdt

−
∫
ΓC×(0,T )

µ|Rσn|
(
1 − δ|Rσn|

)
+sc
(
‖u̇τ − v∗‖

)
η dSdt

=
∫ T

0
〈qth, η〉 dt−

∫
ΩT

Θ̇η dxdt−
∫
ΓC×(0,T )

ke(Θ − θR)η dSdt,

(10.5.20)
for all η ∈ L2(0, T ;H1).

We write the weak formulation in an abstract form, and to that end we
define the operators
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A, B : V1 −→ V ′
1 ,

C1 : V1 −→ H ′
1,

C2 : H1 −→ V ′
1 ,

K1, K2 : H1 −→ H ′
1,

S : Q1 × V1 −→ H ′
1,

as follows,

〈Av,w〉 =
∫
Ω

aijklvk,lwi,j dx, (10.5.21)

〈Bu,w〉 =
∫
Ω

bijkluk,lwi,j dx, (10.5.22)

〈C1v, η〉 =
∫
Ω

mijvi,jη dx, (10.5.23)

〈C2ξ,w〉 = −
∫
Ω

mijξwi,j dx, (10.5.24)

〈K1ξ, η〉 =
∫
ΓC

keξηdS, (10.5.25)

〈K2ξ, η〉 =
∫
Ω

kijξ,iη,j dx, (10.5.26)

〈S(σ,v), η〉 = −
∫
ΓC

µ|Rσn|
(
1 − δ|Rσn|

)
+sc(‖vτ − v∗‖)η dS.

(10.5.27)

We note that each of these operators extends, in a natural way, to an oper-
ator defined on the corresponding space of measurable and square-integrable
vector-valued functions on (0, T ). For example, A extends to an operator
from L2(0, T ;V1) to L2(0, T ;V ′

1) by setting (Au)(t) = A(u(t)). With a slight
abuse of notation, we use below the same symbol to denote both the original
operator and its extension, since the meaning will be clear from the context.

We also consider the functions f ∈ L2(0, T ;V ′
1) and Q ∈ L2(0, T ;H ′

1)
given by

〈〈f ,w〉〉 =
∫
ΩT

fB · w dxdt+
∫
ΩT

mijΘwi,j dxdt+
∫
ΓN ×(0,T )

fN · w dSdt,

〈〈Q, η〉〉 =
∫ T

0
〈qth, η〉 dt−

∫
ΩT

Θ̇η dxdt−
∫
ΓC×(0,T )

ke(Θ − θR)η dS dt

−
∫
ΩT

kijΘ,iη,j dxdt,

for all w ∈ L2(0, T ;V1) and η ∈ L2(0, T ;H1), respectively. Here, 〈〈·, ·〉〉 de-
notes the duality pairing between L2(0, T ;V ′

1) and L2(0, T ;V1), or between
L2(0, T ;H ′

1) and L2(0, T ;H1), as is dictated by the context. Moreover, in
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what follows ∂2j(σ,v) denotes the subdifferential with respect to the argu-
ment v of the functional

j(σ,v) =
∫
ΓC×(0,T )

µ|Rσn|
(
1 − δ|Rσn|

)
+‖vτ − v∗‖ dSdt.

We can now formulate problem (10.5.16)–(10.5.20) abstractly as follows.

Problem PVthve−b. Find (u,σ, ξ) satisfying (10.5.16)–(10.5.18) and

Au̇ +Bu + C2 ξ + ∂2j(σ, u̇) 
 f in L2(0, T ;V ′
1),

ξ̇ +K1ξ +K2ξ + C1u̇ + S(σ, u̇) = Q in L2(0, T ;H ′
1).

The main existence and uniqueness result in [130] is the following.

Theorem 10.5.1. Assume that (10.5.11–15) hold. Then Problem PVthve−b has
a unique solution, provided that ‖µ‖

L∞(Γ
C

) is sufficiently small.

The proof in [130] was based on an abstract existence theorem of [231]
applied to a regularized problem. Then, it was shown that for sufficiently
small friction coefficient the solution operator is a contraction on the appro-
priate Hilbert space. Estimating the allowed size of the friction coefficient,
or removing this restriction altogether, remains an open and very interesting
problem.

We conclude that problem (10.5.2)–(10.5.10) has a unique weak solution
when ‖µ‖

L∞(Γ
C

) is sufficiently small.



11 Contact with Wear or Adhesion

In this chapter we present results on models of frictional contact when the
wear of the contacting surfaces is taken into account. The importance of the
control and minimization of the wear of industrial parts and components can-
not be overstated, and therefore, effective models for the prediction of wear in
industrial settings are indispensable to the design engineer. We describe three
problems of contact with wear for viscoelastic materials of the form (6.4.3).
The wear is described by the differential form of Archard’s law and the con-
tact is bilateral in Sect. 11.1 and with the normal compliance condition in
Sect. 11.2. It is assumed, in both cases, that the wear particles or debris are
removed from the system as quickly as they are being produced. This is the
case in many settings, and one of the functions of engine oil is to remove
such debris. However, in other settings wear particles remain and migrate or
diffuse in the gap between the contacting surfaces causing further wear and
deterioration of the lubricant or of the surfaces themselves. We describe this
in Sect. 11.3, where the diffusion equation is used for the debris.

In the case of bilateral contact with slip it is found that the wear condition
leads to a normal damped response form for the contact stresses. When the
normal compliance condition is used, wear enters as a modification of the gap
between the body and the foundation.

The study of adhesive contact is very recent in the mathematical litera-
ture. The novelty lies in the introduction of the adhesion field on the contact
surface and deriving an equation for its evolution; and we refer to Sect. 3.3
for the modelling details.

In this chapter we present in detail two problems of frictionless adhesive
contact, and mention few others. In Sect. 11.4 we describe a bilateral friction-
less contact problem with reversible and with memory or history dependent
adhesion. It models a situation where cycles of debonding and rebonding may
take place, and in each cycle the adhesive deteriorates slightly. The existence
of the unique solution is stated and proved in Sect. 11.5. In Sect. 11.6 we
present a recent model for the adhesive contact between a membrane and a
rigid obstacle. This model is somewhat different from the others in Part II of
this monograph, since it deals with a simpler geometry and a scalar equation.

We use dimensionless variables in this chapter.

M. Shillor, M. Sofonea, J.J. Telega: Models and Analysis of Quasistatic Contact, Lect. Notes
Phys. 655, (2001), 183–206
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004
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11.1 Bilateral Frictional Contact with Wear

In the problem we describe now the contact between the body and the rigid
moving foundation is maintained at all times, and there is only relative slid-
ing. A setting of this type is a conveyer belt or a chain connecting two rotating
wheels.

Following [22], let w : ΓC×[0, T ] → R be the wear function, which is iden-
tified as the normal depth of the material that is worn out and immediately
removed from the system. It is negative when the foundation is worn out, and
positive when the surface of the body wears out. Here, we assume that the
foundation is rigid and the body wears out, and therefore w is nonnegative.

Since the body is in bilateral contact with the foundation,

un = −w. (11.1.1)

Since w ≥ 0 it follows that un ≤ 0, and therefore the effect of the wear is
the recession of ΓC . In this way we describe the evolution of the shape of the
contact zone as a result of wear.

The evolution of the wear of the contacting surface is governed by a
simplified version of Archard’s law (3.2.1) which we now describe. Since the
normal stress on the contact surface is nonnegative (σn ≤ 0 on ΓC), the wear
rate form of Archard’s law is

ẇ = −kwσn‖u̇τ − v∗‖,

where kw > 0 is the wear coefficient, v∗ is the tangential velocity of the
foundation and ‖u̇τ − v∗‖ represents the relative slip speed between the
contact surface and the foundation. For the sake of simplicity we assume in
this section that the motion of the foundation is uniform, i.e., v∗ does not
vary in time, and so α∗ = ‖v∗‖ > 0 is constant, and kw is also assumed to
be constant. We assume that ‖v∗‖ is large, as is the case in metal forming,
so that ‖u̇τ‖ is negligible in comparison to ‖v∗‖, and thus we obtain the
following version of the wear law,

ẇ = −kwα∗σn. (11.1.2)

We can eliminate, by using (11.1.2), the unknown function w from the
problem. In this manner the problem decouples, and once the solution of the
frictional contact problem has been obtained, the wear of the surface can be
obtained by integration of (11.1.2) in time. Indeed, let δw = 1/(kwα∗), which
by the assumptions is constant. Using (11.1.1) and (11.1.2) we find

σn = δw u̇n. (11.1.3)

Note that (11.1.2) implies ẇ ≥ 0, that is the wear increases in time, also
u̇n ≤ 0 and since σn ≤ 0, it follows that
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−σn = δw |u̇n|. (11.1.4)

We note that (11.1.4) has the same form as the normal damped response
condition (2.6.4).

Using now the usual law of dry friction, and noting that there is only
sliding contact, so that u̇τ �= v∗, we obtain

στ = −µ |σn|
u̇τ − v∗

‖u̇τ − v∗‖ , (11.1.5)

where µ is the coefficient of friction. Although in the wear condition we have
neglected ‖u̇τ‖, as compared with ‖v∗‖, here we retain it, since otherwise
the mathematical problems simplifies considerably. Since σn ≤ 0, condition
(11.1.5) implies

στ = µσn
u̇τ − v∗

‖u̇τ − v∗‖ . (11.1.6)

With (6.4.3) as the constitutive law and (11.1.4), (11.1.6) as the frictional
contact condition, the classical formulation of the mechanical problem of
bilateral contact with sliding friction and wear is the following.

Problem Pve−bw. Find a displacement field u : Ω× [0, T ] → R
d and a stress

field σ : Ω × [0, T ] → S
d such that

σ = Aveε(u̇) + Bveε(u) in ΩT , (11.1.7)
Div σ + fB = 0 in ΩT , (11.1.8)

u = 0 on ΓD × (0, T ), (11.1.9)
σn = fN on ΓN × (0, T ), (11.1.10)

−σn = δw |u̇n|,

στ = µσn
u̇τ − v∗

‖u̇τ − v∗‖


 on ΓC × (0, T ), (11.1.11)

u(0) = u0 in Ω. (11.1.12)

Here and below it is assumed that u̇τ �= v∗, and that (8.5.10), (8.6.13),
(8.6.14) hold.

Recall that the space V , (6.2.3), is a real Hilbert space when equipped
with the inner product (6.2.5). Denote by F the element given by (8.3.13)
and let j : V × V → R be the surface functional

j(u,v) =
∫
ΓC

δw |un|(µ‖uτ − v∗‖ + vn) dS ∀u,v ∈ V. (11.1.13)

The variational formulation of the mechanical problem (11.1.7)–(11.1.12)
is as follows.

Problem PVve−bw. Find a displacement field u : [0, T ] → V and a stress field
σ : [0, T ] → Q1 such that
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u(0) = u0, (11.1.14)

and for all t ∈ [0, T ],

σ(t) = Aveε(u̇(t)) + Bveε(u(t)), (11.1.15)

(σ(t), ε(v) − ε(u̇(t)))Q + j(u̇(t),v) − j(u̇(t), u̇(t))
≥ (F(t),v − u̇(t))V ∀v ∈ V. (11.1.16)

The solvability of this problem, when the slip speed is sufficiently large,
is stated in the following theorem, taken from [22].

Theorem 11.1.1. Let conditions (6.4.4), (6.4.5), (8.5.10), (8.6.13), and
(8.6.14) hold. There exists a positive constant α0, which depends only on
Ω, ΓD, ΓC , Ave and µ, such that, if

δw < α0, (11.1.17)

then Problem PVve−bw has a unique solution (u,σ) which satisfies (8.5.22).

The proof of Theorem 11.1.1 may be carried out by using the same steps
and similar arguments as those in the in the proof of Theorem 8.5.1.

We observe that if α∗ is large enough then δw = 1/(kwα∗) is sufficiently
small and, therefore, condition (11.1.17) for the unique solvability of Prob-
lem PVve−bw is satisfied. We conclude that the mechanical problem (11.1.7)–
(11.1.12) has a unique weak solution if the tangential velocity of the foun-
dation is large enough. This is consistent with neglecting the term u̇τ in the
wear condition (11.1.2) as compared to v∗, which cannot be justified when
the latter is small.

Moreover, having solved the problem (11.1.7)–(11.1.12), we obtain the
wear function w by integration of (11.1.2), using the initial condition w(0) =
0. The latter means that initially the surface is free from any prior wear.

Details on the variational analysis of Problem PVve−bw can be found in [22].
Numerical analysis of the problem, including error estimates for semi-discrete
and fully discrete schemes, is provided in [146].

11.2 Frictional Contact
with Normal Compliance and Wear

In this section we follow [20] and describe frictional contact with normal
compliance when the wear of the contacting surface, due to friction, is taken
into account. As in Sect. 11.1, the foundation is assumed to move steadily and
only sliding takes place. Let g be the initial gap between the body and the
foundation and let pn and pτ denote the normal and tangential compliance
functions. As in the previous section, we introduce the wear function w : ΓC×
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[0, T ] → R+, which measures the accumulated wear of the surface ΓC . We
denote by v∗ and α∗ = ‖v∗‖ the tangential velocity and the tangential speed
of the foundation, respectively. We use the modified version of Archard’s law
(11.1.2) to describe the evolution of wear. We modify the contact conditions
(8.3.5) to take into account the instantaneous material removal that takes
place on the contact surface. We assume below that only sliding takes place
so that u̇τ �= v∗. The classical formulation of the problem of sliding frictional
contact with wear we consider is the following.

Problem Pve−ncw. Find a displacement field u : Ω × [0, T ] → R
d, a stress

field σ : Ω× [0, T ] → S
d, and a wear function w : ΓC × [0, T ] → R+ such that

σ = Aveε(u̇) + Bveε(u) in ΩT , (11.2.1)
Div σ + fB = 0 in ΩT , (11.2.2)

u = 0 on ΓD × (0, T ), (11.2.3)
σn = fN on ΓN × (0, T ), (11.2.4)

−σn = pn(un − w − g),

στ = −pτ (un − w − g)
u̇τ − v∗

‖u̇τ − v∗‖ ,


 on ΓC × (0, T ), (11.2.5)

ẇ = −kw α∗σn on ΓC × (0, T ), (11.2.6)
u(0) = u0, w(0) = 0 in Ω. (11.2.7)

We observe that now the wear appears in the normal compliance condition.
Thus, compared to the problem studied in the previous section, problem
(11.2.1)–(11.2.7) is coupled and therefore more complicated. Indeed, we may
write (11.2.6) as

ẇ = kw α
∗pn(un − w − g),

and, clearly, we must solve the problem of wear together with the contact
problem. Here, too, we assume that kw and α∗ are positive constants.

In the study of the mechanical problem (11.2.1)–(11.2.7) we assume that
the viscosity operator Ave and the elasticity operator Bve satisfy the condi-
tions (6.4.4) and (6.4.5) and the compliance functions pe (e = n, τ) satisfy
condition (8.3.9). We also assume that the force and traction densities sat-
isfy (8.3.10), the gap function satisfies (8.3.11) and the initial displacements
satisfy (8.3.12).

We denote by F(t) the element of V given by (8.3.13), for v ∈ V , and
t ∈ [0, T ], and we use the surface functional j : V × V × L2(ΓC) → R, given
by

j(u,v, w) =
∫
ΓC

pn(un − w − g) vn dS +
∫
ΓC

pτ (un − w − g) ‖vτ − v∗‖ dS

(11.2.8)
for u,v ∈ V , w ∈ L2(ΓC).
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The variational formulation of the mechanical problem (11.2.1)–(11.2.7)
can be stated as follows.

Problem PVve−ncw. Find a displacement field u : [0, T ] → V , a stress field
σ : [0, T ] → Q1, and a wear function w : [0, T ] → L2(ΓC) such that

u(0) = u0, w(0) = 0, (11.2.9)

and for all t ∈ [0, T ],

σ(t) = Aveε(u̇(t)) + Bveε(u(t)), (11.2.10)

ẇ = −kw α∗σn, (11.2.11)

(σ(t), ε(v) − ε(u̇(t)))Q + j(u(t),v, w(t)) − j(u(t), u̇(t), w(t))
≥ (F(t),v − u̇(t))V ∀v ∈ V. (11.2.12)

A triple (u,σ, w) which satisfies (11.2.9)–(11.2.12) is called a weak so-
lution of the mechanical problem of sliding frictional contact with normal
compliance and wear.

The main result in this section is as follows ( [20]).

Theorem 11.2.1. Assume (6.4.4), (6.4.5), and (8.3.9)–(8.3.12). Then there
exists a unique solution (u,σ, w) of Problem PVve−ncw. Moreover, the solution
satisfies

u ∈ C1([0, T ];V ), σ ∈ C([0, T ];Q1), w ∈ C1([0, T ];L2(ΓC)). (11.2.13)

The proof of Theorem 11.2.1 can be found in ( [20]), and was carried
out in several steps. In the first step the wear was assumed to be given and
the corresponding displacements and stresses were found, by using a version
of Theorem 8.3.1. Then, problem PVve−ncw was solved by using the Banach
fixed-point theorem.

We would like to point out that, unlike the case in the previous section,
no smallness assumptions were needed in the proof.

11.3 Frictional Contact with Normal Compliance
and Wear Diffusion

In this section we extend the model in the previous section to include the
diffusion of the wear particles or debris on the contact surface. We follow [153]
and refer the reader to [152] for the full details. Whereas in many applications
the wear debris is assumed to be removed immediately from the surface, in
some important applications the debris remains on the surface, diffuses and
may cause additional, even sever, wear. Such situations arise in orthopedic
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biomechanics of joint prostheses after arthoplasty (see, e.g., [148, 149] and
references therein). Since friction and wear debris influence the quality and
long term performance of artificial joints and implants, they need to be taken
into account when modelling these processes.

We model the process in which a viscoelastic body is in frictional contact
with a moving foundation and, as a result, a part of its surface wears out.
The wear particles are assumed to remain and diffuse on the potential contact
surface.

The setting is as in the previous section and is depicted in Fig. 1, and
the body Ω is three-dimensional. Moreover, we assume that the coordinate
system is such that ΓC occupies a regular domain in the x3 = 0 plane, the
foundation is planar and is moving with velocity v∗ in the plane x3 = −g ≤ 0.
We assume that ΓC is divided into two subdomains Dd and Dw by a smooth
curve γ∗, and wear takes place only on the part Dw, while the diffusion of
the wear particles takes place in the whole of ΓC . The boundary γ = ∂ΓC
of ΓC is assumed Lipschitz and is composed of two parts γd and γw. Thus,
∂Dw = γw ∪ γ∗ and ∂Dd = γd ∪ γ∗. The setting is depicted in Fig. 9.

Dw

Dd
γw γdγ∗

�
�

�
�

�
�

�
�
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��

�

�

�

�
�v∗

Fig. 9. The contact surface ΓC ; wear is produced only in Dw

The wear of the surface is described by the wear function w which is
defined on the part Dw of ΓC , and the diffusion of the wear debris by the
wear particle surface density function wd which is defined on the whole of
ΓC . The wear function w measures the volume density of material removed
per unit surface area, see, e.g., [97, 98] and references therein. We assume
that wd = κww in Dw, where κw is a conversion factor from wear depth
to wear particles surface density and is assumed to be a positive constant.
This assumption simplifies the model since w = ηwwd in Dw, for ηw = 1/κw.
Next, we extend w by zero to the whole of ΓC , and thus, w = ηwwdχ[Dw] on
ΓC × (0, T ), where χ[Dw] is the characteristic function of Dw.

The diffusion of the particles is described by the nonlinear evolutionary
equation,
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ẇd − div (k∇wd) = κκw‖στ‖RM (‖u̇τ − v∗‖)χ[Dw], (11.3.1)

in ΓC × (0, T ). Here k denotes the wear particle diffusion coefficient, κ is the
wear rate constant, and RM : R+ → R+ is the truncation operator: RM (r) =
r if r ≤ M , RM (r) = M if r > M , M being a given positive constant. We
need this operator in order to avoid some mathematical difficulties related
to very large slip rates, however, from the physical point of view the use of
RM is not restrictive since, in practice, the slip velocity is bounded and no
smallness assumption will be made on M . We use χ[Dw] on the right-hand
side of (11.3.1) since the particles are produced only in Dw, and the rate of
production is multiplied by κw.

We use a version of the normal compliance condition to model the contact,
but since the process involves the wear of the contacting surfaces we take into
account the change in the geometry by replacing the gap g with g+w, as in
the previous section. Therefore,

−σn = pn(un − ηwwdχ[Dw] − g) on ΓC × (0, T ). (11.3.2)

The friction law is chosen as (2.6.6), where H = µ|σn|, thus,

‖στ‖ ≤ µ|σn|,

if u̇τ �= v∗ then στ = −µ|σn|
u̇τ − v∗

‖u̇τ − v∗‖ (11.3.3)

on ΓC × (0, T ). Here, µ = µ(wd, ‖u̇τ −v∗‖) is the coefficient of friction which
is assumed to depend on the density of the wear particles and on the slip
rate.

The classical formulation of the problem of frictional contact of a vis-
coelastic body with wear diffusion is as follows.

Problem Pve−ncwd. Find a displacement field u : Ω × [0, T ] → R
3, a stress

field σ : Ω × [0, T ] → S
3, and a wear function wd : ΓC × [0, T ] → R+ such

that

σ = Aveε(u̇) + Bveε(u) in ΩT , (11.3.4)
Div σ + fB = 0 in ΩT , (11.3.5)

u = 0 on ΓD × (0, T ), (11.3.6)
σn = fN on ΓN × (0, T ), (11.3.7)

−σn = pn(un − ηwwdχ[Dw] − g),
‖στ‖ ≤ µ|σn|,

στ = −µ|σn|
u̇τ − v∗

‖u̇τ − v∗‖ if u̇τ �= v∗




on ΓC × (0, T ), (11.3.8)

ẇd − div (k∇wd) = µwpnRM (‖u̇τ − v∗‖)χ[Dw] on ΓC × (0, T ), (11.3.9)

wd = 0 on γ × (0, T ), (11.3.10)
u(0) = u0, in Ω, wd(0) = wd0 on ΓC . (11.3.11)
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Here, we set µw = κκwµ; (11.3.5) represents the equation of equilibrium, since
the process is assumed quasistatic; (11.3.6) and (11.3.7) are the displacement
and traction boundary conditions, and (11.3.10) is an absorbing boundary
condition, since once a wear particle reaches the boundary γ = ∂ΓC it dissa-
pears; finally, (11.3.11) represent the initial conditions in which u0 and wd0
are given.

To obtain a variational formulation for problem Pve−ncwd we proceed as
above. For the surface particle density function we use the space H1

0 (ΓC).
We denote by H−1(ΓC) the dual of H1

0 (ΓC) and 〈·, ·〉 represents the duality
pairing between H−1(ΓC) and H1

0 (ΓC).
To study the mechanical problem Pve−ncwd we make the following as-

sumptions on the problem data.
The viscosity operator Ave : Ω×S

3 −→ S
3 satisfies: there exist two constants

LA > 0 and mA > 0 such that

(a) ‖Ave(x, ε1) − Ave(x, ε2)‖ ≤ LA‖ε1 − ε2‖, ∀ ε1, ε2 ∈ S
3, a.e. x ∈ Ω;

(b) (Ave(x, ε1) − Ave(x, ε2)) · (ε1 − ε2) ≥ mA ‖ε1 − ε2‖2,
∀ ε1, ε2 ∈ S

3, a.e. x ∈ Ω;
(c) x �−→ Ave(x, ε) is Lebesgue measurable on Ω, ∀ ε ∈ S

3;
(d) x �−→ Ave(x,0) ∈ Q.

(11.3.12)
The elasticity operator Bve : Ω × S

3 −→ S
3 satisfies: there exists a constant

LB > 0 such that

(a) ‖Bve(x, ε1) − Bve(x, ε2)‖ ≤ LB ‖ε1 − ε2‖, ∀ ε1, ε2 ∈ S
3, a.e. x ∈ Ω;

(b) x �−→ Bve(x, ε) is Lebesgue measurable on Ω, ∀ ε ∈ S
3;

(c) x �−→ Bve(x,0) ∈ Q.
(11.3.13)

The normal compliance function pn : ΓC × R → R+ satisfies: there exist two
constants Ln > 0 and p∗

n > 0 such that

(a) |pn(x, u1) − pn(x, u2)| ≤ Ln|u1 − u2|, ∀u1, u2 ∈ R, a.e. x ∈ ΓC ;
(b) x �−→ pn(x, u) is Lebesgue measurable on ΓC , ∀u ∈ R;
(c) x �−→ pn(x, u) = 0 for u ≤ 0, a.e. x ∈ ΓC ;
(d) p∗

n(x, u) ≤ p∗
n ∀u ∈ R, a.e. x ∈ ΓC .

(11.3.14)
The coefficient of friction µ : ΓC×R → R+ satisfies: there exist two constants
Lµ > 0 and µ∗ > 0 such that

(a) |µ(x, r1, s1) − µ(x, r2, s2)| ≤ Lµ(|r1 − r2| + |s1 − s2|),
∀ r1, r2, s1, s2 ∈ R, a.e. x ∈ ΓC ;

(b) x �−→ µ(x, r, s) is Lebesgue measurable on ΓC , ∀ r, s ∈ R;
(c) µ(x, r, s) ≤ µ∗, ∀ r, s ∈ R, a.e. x ∈ ΓC .

(11.3.15)
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The forces, tractions, particle diffusion coefficient, wear rate constant and the
initial data satisfy, respectively:

(a) fB ∈ C([0, T ];L2(Ω)3), fN ∈ C([0, T ];L2(ΓN )3);
(b) k ∈ L∞(ΓC), k ≥ k∗ > 0 a.e. on ΓC .
(c) κ ∈ L∞(ΓDw

), κ ≥ 0 a.e. on ΓDw
.

(d) u0 ∈ V, wd0 ∈ L2(ΓC).

(11.3.16)

Next, we define the function F : [0, T ] → V , the functional j : L2(ΓC) ×
V 3 → R, the bilinear form a : H1

0 (ΓC) × H1
0 (ΓC) → R and the operator

Λ : H1
0 (ΓC) × V 3 → H−1(ΓC) by

(F(t),v)V =
∫
Ω

fB(t) · v dx+
∫
ΓN

fN (t) · v dS,

j(wd,u,v,w) =
∫
ΓC

pn(un − ηwwdχ[Dw] − g)wn dS

+
∫
ΓC

µ(wd, ‖vτ − v∗‖)pn(un − ηwwdχ[Dw] − g)

×‖wτ − v∗‖ dS,

a(wd, ξ) =
∫
ΓC

k∇wd · ∇ξ dS,

〈Λ(wd,u,v,w), ξ〉 =
∫
Dw

µw(wd, ‖vτ − v∗‖)pn(un − ηwwd − g)

×RM (‖wτ − v∗‖)ξ dS,

for all u,v,w ∈ V , wd, ξ ∈ H1
0 (ΓC) and t ∈ [0, T ].

Using Green’s formula leads to the following variational formulation of
problem Pve−ncwd.

Problem PVve−ncwd. Find a displacement field u : [0, T ] −→ V and a surface
particle density field wd : [0, T ] −→ H1

0 (ΓC) such that

(Ave(ε(u̇(t))), ε(v) − ε(u̇(t)))Q + (Bve(ε(u(t))), ε(v) − ε(u̇(t)))Q

+j(wd(t),u(t), u̇(t),v) − j(wd(t),u(t), u̇(t), u̇(t)) (11.3.17)

≥ (F(t),v − u̇(t))V ∀v ∈ V, t ∈ [0, T ],

〈ẇd(t), ξ〉 + a(wd(t), ξ) = 〈Λ(wd(t),u(t), u̇(t), u̇(t)), ξ〉 (11.3.18)

∀ ξ ∈ H1
0 (ΓC), a.e. t ∈ (0, T ),

u(0) = u0, wd(0) = wd0. (11.3.19)

The following result on the existence and uniqueness of the solution to
problem PVve−ncwd was established in [153].
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Theorem 11.3.1. Assume that (11.3.12)–(11.3.16) hold. Then, there exists
a constant c0 > 0, which depends on Ω, ΓD, ΓC , mA, Ln, Lµ, ‖κ‖L∞(Dw),
κw and M such that, if p∗

n < c0 and µ∗ < c0, there exists a unique solution
of problem PVve−ncwd. Moreover, the solution satisfies

u ∈ C1([0, T ];V ), wd ∈ L2(0, T ;H1
0 (ΓC)) ∩ C([0, T ];L2(ΓC)), (11.3.20)

ẇd ∈ L2(0, T ;H−1(ΓC)). (11.3.21)

The proof of the theorem was based on elements from the theories of equations
of evolution and time-dependent elliptic variational inequalities, and fixed
point arguments. The full details can be found in [153].

Let now {u, wd} denote a solution of Problem PVve−ncwd and let σ be the
stress field given by (11.3.4). Using (11.3.12) and (11.3.13) it follows that
σ ∈ C([0, T ];Q).

A triple of functions {u,σ, wd} which satisfies (11.3.4), (11.3.17)– (11.3.19)
is called a weak solution of the mechanical problem Pve−ncwd. We conclude
that, if the normal compliance function pn and the coefficient of friction µ
are sufficiently small, then problem Pve−ncwd has a unique weak solution.

The size of the allowed bounds p∗
n and µ∗, and whether they have physical

significance or are only artifacts caused by the use of the fixed-point argument
are open and intricate questions. In view of their important applications, the
investigation of such problems is very likely to expand rapidly.

11.4 Adhesive Viscoelastic Bilateral Contact

We now describe a model for frictionless contact with adhesive on the con-
tacting surfaces.

We assume that the contact is bilateral, so there is no separation between
the body and the foundation during the process, and then the normal dis-
placement vanishes on ΓC . We follow the presentation in [162], and note that
similar results for the model with normal compliance have been obtained
recently in [160,168].

Let β denote the bonding or adhesion field, which represents the fractional
density of the active glue bonds on the contact surface (see Sect. 3.3 for full
details). We assume that the resistance to tangential motion is generated by
the glue, in comparison to which the frictional traction can be neglected. A
different assumption, taking friction into account, can be found in [148, 149,
158]. Therefore, the tangential contact traction depends only on the bonding
field and the tangential displacement, thus,

−στ = pτ (β,uτ ).

Here, pτ is a general prescribed function. In particular, we may consider the
case
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pτ (β, r) =



qτ (β) r if ‖r‖ ≤ Lb,

qτ (β)
Lb
‖r‖ r if ‖r‖ > Lb,

(11.4.1)

where Lb > 0 is a characteristic length of the bonds (see, e.g., [158], or
Sect. 3.3), and qτ is a prescribed, nonnegative tangential stiffness function. A
more general condition may be used in the three-dimensional case, when the
surface has intrinsic directions, such as grooves. Then, one needs to replace
qτ with a two-dimensional tensor. The results below can be easily extended
to such cases. In two dimensions the surface is only a curve and qτ is just a
number.

As in [161], the evolution of the adhesion field is assumed to depend in a
general manner on β and uτ . The process is assumed reversible, and we do
not impose sign restrictions on it, and thus, cycles of debonding and rebond-
ing may take place, as a result of imposed periodic forces or displacements.
In addition, we include the possibility that, as the cycles of bonding and
debonding go on, there is a deterioration of the glue and, thus, a decrease in
the bonding effectiveness. Therefore, the process is also assumed to be with
memory so that it depends on the bonding history, which we denote by

ψβ(x, t) =
∫ t

0
β(x, s) ds. (11.4.2)

The process is assumed to be governed by the differential equation

β̇ = Had(β, ψβ , RLb
(‖uτ‖)).

Here, Had is a general adhesive rate function discussed below, which van-
ishes when its first argument vanishes. The function RLb

: R+ → R+ is the
truncation operator defined as

RLb
(s) =

{
s if 0 ≤ s ≤ Lb,

Lb if s > Lb.

We use it in Had assuming that when the glue is stretched beyond the limit
Lb, it does not contribute more to the bond strength.

An example of such a function is

Had(β, r) = −γnβr2, (11.4.3)

where γn is the bonding energy coefficient, and then γnL is the maximal ten-
sile normal traction that the adhesive can provide. We note that in this case
the process is irreversible and only debonding is allowed. Another example,
in which Had depends on all three variables is

Had(β, ψβ , r) = −γ1β r
2 + γ2

β+(1 − β)+
1 + d∗ψ2

β

, (11.4.4)
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where γ1, γ2 and d∗ are positive coefficients, see also (3.3.4). Here, the mag-
nitude of the tangential displacement r = ‖uτ‖ causes debonding, and is
represented by the first term on the right-hand side. There is also a natural
tendency to rebond, which is described by the second term on the right-hand
side. However, the bonding field cannot exceed β = 1, and moreover, the
rebonding becomes weaker as the process goes on, which is represented by
the factor 1+d∗ψ2

β in the denominator, where d∗ is the history weight factor.
Let u0 be the initial displacement and β0 the initial bonding field. Then,

the classical formulation of the mechanical problem of viscoelastic, friction-
less, bilateral and adhesive contact may be stated as follows.

Problem Pve−badh. Find a displacement field u : Ω × [0, T ] → R
d, a stress

field σ : Ω × [0, T ] → R
d, and an adhesion field β : ΓC × [0, T ] → [0, 1] such

that

σ = Aveε(u̇) + Bveε(u) in ΩT , (11.4.5)
Divσ + fB = 0 in ΩT , (11.4.6)

u = 0 on ΓD × (0, T ), (11.4.7)
σn = fN on ΓN × (0, T ), (11.4.8)
un = 0 on ΓC × (0, T ), (11.4.9)

−στ = pτ (β,uτ ) on ΓC × (0, T ), (11.4.10)
β̇ = Had(β, ψβ , RLb

(‖uτ‖)) on ΓC × (0, T ), (11.4.11)
u(0) = u0 in Ω, (11.4.12)
β(0) = β0 on ΓC . (11.4.13)

To obtain a variational formulation of problem (11.4.5)–(11.4.13), in terms
of the displacement field, we need the space V1 defined by (6.2.7). Recall that
V1 is a real Hilbert space endowed with the inner product (6.2.5) and the
associated norm (6.2.6). Also, for the stress field σ we need the spaces Q and
Q1, defined by (6.2.2) and (6.2.10), respectively.

We assume that the tangential contact function satisfies

(a) pτ : ΓC × R × R
d → R

d.

(b) There exists Lτ > 0 such that
|pτ (x, β1, r1) − pτ (x, β2, r2)| ≤ Lτ (|β1 − β2| + ‖r1 − r2‖)
∀β1, β2 ∈ R, r1, r2 ∈ R

d, a.e. x ∈ ΓC .

(c) For any β ∈ R and r ∈ R
d, x �→ pτ (x, β, r)

is measurable on ΓC .

(d) The mapping x �→ pτ (x, 0,0) ∈ L∞(ΓC)d.

(e) pτ (x, β, r) · n(x) = 0 ∀r ∈ R
d such that r · n(x) = 0,

a.e. x ∈ ΓC .




(11.4.14)
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Clearly, if the function qτ : R → R in (11.4.1) is bounded and Lipschitz
continuous, then the corresponding tangential contact function pτ satisfies
condition (11.4.14). We conclude that the results below are valid for the
corresponding contact problems.

Next, the adhesion rate function Had is assumed to satisfy

(a) Had : ΓC × R × R × [0, L] → R.

(b) There exists Lad > 0 such that

|Had(x, b1, z, r) −Had(x, b2, z, r)| ≤ Lad |b1 − b2|
∀ b1, b2 ∈ R, z ∈ R, r ∈ [0, L], a.e. x ∈ ΓC and

|Had(x, b1, z1, r1) −Had(x, b2, z2, r2)|
≤ Lad (|b1 − b2| + |z1 − z2| + |r1 − r2|)
∀ b1, b2 ∈ [0, 1], z1, z2 ∈ R, r1, r2 ∈ [0, L], a.e. x ∈ ΓC .

(c) For any b, z ∈ R and r ∈ [0, L], x �→ Had(x, b, z, r)
is measurable on ΓC .

(d) The mapping (b, z, r) �→ Had(x, b, z, r) is continuous on
R × R × [0, L], a.e. x ∈ ΓC .

(e) Had(x, 0, z, r) = 0 ∀ z ∈ R, r ∈ [0, L], a.e. x ∈ ΓC .

(f) Had(x, b, z, r) ≥ 0 ∀ b ≤ 0, z ∈ R, r ∈ [0, L], a.e. x ∈ ΓC ,
Had(x, b, z, r) ≤ 0 ∀ b ≥ 1, z ∈ R, r ∈ [0, L], a.e. x ∈ ΓC .




(11.4.15)

We observe that if β ∈ L∞(ΓC), z ∈ L∞(ΓC) and r : ΓC → R is a
measurable function, then conditions (11.4.15) imply that the mapping x �→
Had(x, β(x), z(x), RLb

r(x)) belongs to L∞(ΓC). It is straightforward to see
that if the adhesion coefficient γn ∈ L∞(ΓC) satisfies γn ≥ 0 a.e. on ΓC
then the function Had in example (11.4.3) satisfies (11.4.15); moreover, if the
coefficients γ1, γ2 and d∗ are positive functions which belong to L∞(ΓC),
then the function Had in example (11.4.4) satisfies (11.4.15). We conclude
that all the results below are valid for this choice of Had.

We suppose that the body forces and surface tractions satisfy

fB ∈ L∞(0, T ;L2(Ω)d), fN ∈ L∞(0, T ;L2(ΓN )d), (11.4.16)

and the initial data satisfy

u0 ∈ V1, β0 ∈ L∞(ΓC) and 0 ≤ β0 ≤ 1 a.e. on ΓC . (11.4.17)

Next, we define the element F(t) ∈ V1 by (7.3.11), for all v ∈ V1, a.e.
t ∈ (0, T ), and let j : L∞(ΓC) × V1 × V1 → R be the adhesion functional

j(β,u,v) =
∫
ΓC

pτ (β,uτ ) · vτ dS ∀β ∈ L∞(ΓC), ∀u, v ∈ V1. (11.4.18)

We have the following variational formulation of the problem Pve−badh.
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Problem PVve−badh. Find a displacement field u : [0, T ] → V1, a stress field
σ : [0, T ] → Q1, and an adhesion field β : [0, T ] → L∞(ΓC), such that

σ(t) = Aveε(u̇(t)) + Bveε(u(t)), (11.4.19)

β̇(t) = Had(β(t), ψβ(t), RLb
(‖uτ (t)‖)), 0 ≤ β(t) ≤ 1, (11.4.20)

(σ(t), ε(v))H + j(β(t),u(t),v) = (F(t),v)V ∀v ∈ V1, (11.4.21)

for a.e. t ∈ (0, T ), and

u(0) = u0, β(0) = β0. (11.4.22)

The following existence and uniqueness result was established in [162].

Theorem 11.4.1. Assume that (6.4.4), (6.4.5), (11.4.14)–(11.4.17) hold.
Then there exists a unique solution (u,σ, β) of problem PVve−badh and it sat-
isfies

u ∈ W 1,∞(0, T ;V1), (11.4.23)

σ ∈ L∞(0, T ;Q1), (11.4.24)

β ∈ W 1,∞(0, T ;L∞(ΓC)). (11.4.25)

The proof of Theorem 11.4.1 will be presented in the next section. We
conclude that problem Pve−bad has a unique weak solution.

It may be of interest to generalize the adhesion evolution rule (11.4.11)
to a general Lipschitz function, but then it would be necessary to add sub-
differential terms to it to guarantee that 0 ≤ β ≤ 1, which is dictated by the
interpretation of β.

11.5 Proof of Theorem 11.4.1

The proof of the Theorem will be carried out in several steps, provided in the
lemmas below. The assumption of Theorem 11.4.1 hold in this section. Let
η ∈ L∞(0, T ;V1) be given, which means that the elastic part (η = Bveε(u))
of the stress is prescribed. In the first step we consider the following purely
viscous problem.
Problem P ηV . Find a displacement field uη : [0, T ] → V1 such that

(Aveε(u̇η(t)), ε(v))Q + (η(t),v)V = (F(t),v)V (11.5.1)
∀v ∈ V1, a.e. t ∈ (0, T ),

uη(0) = u0. (11.5.2)

We have the following result for this problem.
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Lemma 11.5.1. There exists a unique solution for problem P ηV , and it sat-
isfies (11.4.23).

Proof. We define the operator A : V1 → V1 by

(Au,v)V = (Aveε(u), ε(v))Q ∀u, v ∈ V1. (11.5.3)

Using (6.2.5) and (6.4.4) it follows that

‖Au −Av‖V ≤ LA‖u − v‖V ∀u, v ∈ V1,

(Au −Av,u − v)V ≥ mA ‖u − v‖2
V ∀u, v ∈ V1,

i.e., A is a strongly monotone Lipschitz continuous operator. Since F − η ∈
L∞(0, T ;V1) it follows from Corollary 6.3.4 that there exists a unique function
vη ∈ L∞(0, T ;V1), which satisfies

Avη(t) + η(t) = F(t) a.e. t ∈ (0, T ). (11.5.4)

Let uη : [0, T ] → V1 be defined by

uη(t) =
∫ t

0
vη(s)ds+ u0 ∀ t ∈ [0, T ]. (11.5.5)

It follows from (11.5.3)–(11.5.5) that uη is a solution of the variational prob-
lem P ηV , and it satisfies (11.4.23). This concludes the existence part of the
lemma. The uniqueness of the solution follows from the unique solvability of
the time dependent equation (11.5.4), which concludes the proof. �

We denote by uη the solution of problem P ηV obtained in Lemma 11.5.1,
for η ∈ L∞(0, T ;V1). In the next step, we solve equation (11.4.20) for the
adhesion field under the assumption that u = uη. Thus, we consider the
following evolution problem.

Problem QηV . Find an adhesion field βη : [0, T ] → L∞(Γ3) such that

β̇η(t) = Had(βη(t), ψβη (t), RLb
(‖uη τ (t)‖)) a.e. t ∈ (0, T ), (11.5.6)

βη(0) = β0. (11.5.7)

The following result asserts that, for each given u = uη, this problem has
a unique solution βη.

Lemma 11.5.2. There exists a unique solution for problem QηV , and it sat-
isfies (11.4.25) and also

0 ≤ βη(t) ≤ 1 ∀t ∈ [0, T ], a.e. on ΓC . (11.5.8)
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Proof. For the sake of simplicity we suppress the dependence of various
functions on x ∈ ΓC , and note that the equalities and inequalities below
are valid a.e. x ∈ ΓC . Let ψ ∈ L∞(0, T ;L∞(ΓC)) and define the map
Fη ψ(t, ·) : L∞(ΓC) → L∞(ΓC), a.e. on (0, T ), by

Fη ψ(t, β) = Had(β, ψ(t), RLb
(‖uη τ (t)‖)).

It is easy to check that Fη ψ is Lipschitz continuous with respect to the
second variable, uniformly in time, and for all β ∈ L∞(ΓC) the mapping
t �→ Fη ψ(t, β) belongs to L∞(0, T ;L∞(ΓC)). Thus, using Theorem 6.3.6 we
deduce that there exists a unique function βη ψ ∈ W 1,∞(0, T ;L∞(ΓC)) such
that

β̇η ψ(t) = Had(βη ψ(t), ψ(t), RLb
(‖uητ (t)‖)) a.e. t ∈ (0, T ), (11.5.9)

βη ψ(0) = β0. (11.5.10)

We prove next that βη ψ satisfies condition (11.5.8). To this end we sup-
pose that βη ψ(t0) < 0 for some t0 ∈ [0, T ]. By assumption (11.4.17) we
have that 0 ≤ βη ψ(0) ≤ 1, and since the mapping t �→ β(t) : [0, T ] → R

is continuous, we can find t1 ∈ [0, t0), such that βη ψ(t1) = 0. Now, let
t2 = sup {t ∈ [t1, t0), : βη ψ(t) = 0}, then t2 < t0, βη ψ(t2) = 0 and
βη ψ(t) < 0, for t ∈ (t2, t0]. Assumptions (11.4.15)(f) and (11.5.9) imply
that β̇η ψ(t) ≥ 0 for t ∈ (t2, t0], therefore βη ψ(t0) ≥ βη ψ(t2) = 0, which is a
contradiction. A similar argument shows that βη ψ(t) ≤ 1 for all t ∈ [0, T ].
We conclude that

0 ≤ βη ψ(t) ≤ 1 ∀t ∈ [0, T ], a.e. on ΓC . (11.5.11)

Let the operator Λη : L∞(0, T ;L∞(ΓC)) → L∞(0, T ;L∞(ΓC)), which
associates to ψ the integral of the solution βη ψ, be given by

Ληψ(t) =
∫ t

0
βη ψ(s) ds ∀t ∈ [0, T ]. (11.5.12)

We prove that it has a unique fixed point. Indeed, let ψ1, ψ2 ∈ L∞

(0, T ;L∞(ΓC)) and let s ∈ [0, T ]. It follows from (11.5.9), (11.5.10) for i = 1, 2
that

βη ψi
(s) = β0 +

∫ s

0
Had(βη ψi(θ), ψi(θ), RLb

(‖uη τ (θ)‖)) dθ,

and, using (11.5.11), (11.4.15)(b), we find

|βη ψ1(s) − βη ψ2(s)| ≤

Lad
∫ s

0
|βη ψ1(θ) − β ψη2(θ)| dθ + Lad

∫ s

0
|ψ1(θ) − ψ2(θ)| dθ.

Applying Gronwall’s inequality, yields
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|βη ψ1(s) − βη ψ2(s)| ≤ c

∫ s

0
|ψ1(θ) − ψ2(θ)| dθ,

and so we obtain

‖βη ψ1(s) − βη ψ2(s)‖L∞(ΓC) ≤ c

∫ s

0
‖ψ1(θ) − ψ2(θ)‖L∞(ΓC) dθ. (11.5.13)

Here and below, we denote by c a positive constant which may depend on
the data but is independent of time, and whose value may change from place
to place.

From (11.5.12) and (11.5.13) we find, ∀t ∈ [0, T ], that

‖Ληψ1(t) − Ληψ2(t)‖L∞(ΓC) ≤ c

∫ t

0

∫ s

0
‖ψ1(θ) − ψ2(θ)‖L∞(ΓC) dθ.

Reiterating this inequality n times yields

‖Λnη ψ1 − Λnη ψ2‖L∞(0,T ;L∞(ΓC)) ≤ (cT )2n

(2n) !
‖ψ1 − ψ2‖L∞(0,T ;L∞(ΓC)),

and, since

lim
n

(cT )2n

2n!
= 0,

it follows that for a sufficiently large n the mapping Λnη is a contraction in
the Banach space L∞(0, T ;L∞(ΓC)). Therefore, Theorem 6.3.9 implies that
there exists a unique ψη ∈ L∞(0, T ;L∞(ΓC)) such that Λnη ψη = ψη and,
moreover, ψη is the unique fixed point of Λη.

Let βη = βη ψη be the solution of (11.5.9), (11.5.10) for ψ = ψη. Using
(11.5.12) and (11.4.2) we obtain

ψη(t) = Ληψη(t) =
∫ t

0
βη ψη (s) ds =

∫ t

0
βη(s) ds = ψβη (t) ∀t ∈ [0, T ],

and keeping in mind (11.5.9)–(11.5.11), it follows that βη is a solution of
problem QηV and it also satisfies (11.4.25) and (11.5.8). This concludes the
existence part of Lemma 11.5.2. The uniqueness of the solution follows from
the uniqueness of the fixed point of the operator Λη. �

Now, given η ∈ L∞(0, T ;V1), we denote by βη the solution of Problem
QηV obtained in Lemma 11.5.2. We also denote by Λη(t) the element of V1
defined by

(Λη(t),v)V = (Bve ε(uη(t)), ε(v))Q + j(βuη
(t),uη(t),v), (11.5.14)

for v ∈ V1 and t ∈ [0, T ]. We have the following result.

Lemma 11.5.3. For η ∈ L∞(0, T ;V1), the function Λη : [0, T ] → V1 is
continuous. Moreover, there exists a unique element η∗ ∈ L∞(0, T ;V1) such
that Λη∗ = η∗.
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Proof. Let η ∈ L∞(0, T ;V1) and let t1, t2 ∈ [0, T ]. Using (11.5.14), (11.4.18)
and (6.2.9) we obtain

‖Λη(t1) − Λη(t2)‖V ≤ ‖Bve ε(uη(t1)) − Bve ε(uη(t2))‖Q

+ cB ‖pτ (βη(t1),uητ (t1)) − pτ (βη(t2),uητ (t2))‖L2(ΓC),

and, then (6.4.5) and (11.4.14) imply that

‖Λη(t1) − Λη(t2)‖V ≤ c ‖uη(t1) − uη(t2)‖V
+c ‖βη(t1) − βη(t2)‖L2(ΓC). (11.5.15)

Now, since t �→ u(t) : [0, T ] → V1 and t �→ βη(t) : [0, T ] → L∞(ΓC) are
continuous functions, we deduce from (11.5.15) that Λη : [0, T ] → V1 is a
continuous function, too.

Let t ∈ [0, T ] be fixed. Let η1, η2 ∈ L∞(0, T ;V1), and we use the notation
uηi = ui, u̇ηi = vi, βηi = βi for i = 1, 2. Arguments similar to those in the
proof of (11.5.15) yield

‖Λη1(t)−Λη2(t)‖2
V ≤ c ‖u1(t)−u2(t)‖2

V +c ‖β1(t)−β2(t)‖2
L2(ΓC). (11.5.16)

Moreover, from (11.5.6) and (11.5.7) we find

βi(t) = β0 +
∫ t

0
Had(βi(s), ψβi(s), RLb

(‖ui τ (s)‖)) ds, (11.5.17)

for i = 1, 2. We use (11.5.17), (11.5.8), (11.4.15)(b) and the definition of RLb

(page 194) to obtain

|β1(t) − β2(t)| ≤ Lad
∫ t

0
|β1(s) − β2(s)| ds+ Lad

∫ t

0
|ψβ1(s) − ψβ2(s)| ds

+Lad
∫ t

0
‖u1 τ (s) − u2 τ (s)‖ ds. (11.5.18)

Using now (11.4.2) yields
∫ t

0
|ψβ1(s) − ψβ2(s)| ds ≤ c

∫ t

0
|β1(s) − β2(s)| ds, (11.5.19)

and then (11.5.18), (11.5.19) and Gronwall’s inequality yield

|β1(t) − β2(t)|2 ≤ c

∫ t

0
‖u1 τ (s) − u2 τ (s)‖2 ds.

Integrating the last inequality over ΓC and using (6.2.9) we obtain

‖β1(t) − β2(t)‖2
L2(ΓC) ≤ c

∫ t

0
‖u1(s) − u2(s)‖2

V ds ∀t ∈ [0, T ]. (11.5.20)
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Then, by (11.5.16) and (11.5.20) after some algebraic manipulation we find

‖Λη1(t) − Λη2(t)‖2
V ≤ c ‖u1(t) − u2(t)‖2

V + c

∫ t

0
‖u1(s) − u2(s)‖2

V ds

≤ c

∫ t

0
‖v1(s) − v2(s)‖2

V ds.

(11.5.21)
Moreover, from (11.5.1) we obtain

(Aveε(v1) − Ave, ε(v2), ε(v1) − ε(v2))Q + (η1 − η2,v1 − v2)V = 0
a.e. on (0, T ).

Integrating this inequality with respect to time and using the properties of
the viscosity operator Ave leads to

mA
∫ t

0
‖v1(s) − v2(s)‖2

V ds ≤ −
∫ t

0
(η1(s) − η2(s),v1(s) − v2(s))V ds,

which implies
∫ t

0
‖v1(s) − v2(s)‖2

V ds ≤ c

∫ t

0
‖η1(s) − η2(s)‖2

V ds. (11.5.22)

Now, from (11.5.21) and (11.5.22) we have

‖Λη1(t) − Λη2(t)‖2
V ≤ c

∫ t

0
‖η1(s) − η2(s)‖2

V ds.

Reiterating this inequality n times yields

‖Λn η1 − Λn η2‖2
L∞(0,T ;V1) ≤ (cT )n

n!
‖η1 − η2‖2

L∞(0,T ;V1),

which implies that for a sufficiently large n the mapping Λn is a contraction
in the Banach space L∞(0, T ;V1). Therefore, there exists a unique η∗ ∈
L∞(0, T ;V1) such that Λn η∗ = η∗ and, moreover, η∗ is the unique fixed
point of Λ. �

We now have the ingredients to prove Theorem 11.4.1.

Proof (Theorem 11.4.1). Let η∗ ∈ L∞(0, T ;V1) be the fixed point of Λ and
let u, β be the respective solutions of the variational problems P ηV and QηV ,
for η = η∗, i.e. u = uη∗ , β = βη∗ . We denote by σ the function given by

σ = Aveε(u̇) + Bveε(u).

Clearly, (11.4.19), (11.4.20), and (11.4.22) hold. Since Λη∗ = η∗, from
(11.5.1) and (11.5.14) we find that (11.4.21) holds too. Moreover, u ∈
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W 1,∞(0, T ;V1), so it follows from (6.4.4) and (6.4.5) that σ ∈ L∞(0, T ;Q).
Choosing now v = ϕ ∈ C∞

0 (Ω)d in (11.4.21) yields

Divσ(t) + fB(t) = 0 a.e. t ∈ (0, T ).

Now, (11.4.16) implies that Div σ ∈ L∞(0, T ;L2(Ω)d) which yields (11.4.24).
We conclude that the triple (u,σ, β) is a solution of Problem PVve−badh and it
satisfies (11.4.23)–(11.4.25). This concludes the existence proof . The unique-
ness of the solution follows from arguments similar to those used in the proof
of Theorem 9.1.1 (page 137). These, in turn follow from the uniqueness of
solution of the Cauchy problems P ηV and QηV and the uniqueness of the fixed-
point of the operator Λ. �

11.6 Membrane in Adhesive Contact

We describe a new version of the classical obstacle problem for a stretched
membrane, when the obstacle is covered with an adhesive or a glue. We con-
sider the setting where the membrane is attached to a rigid rim, its displace-
ments are restricted to lie on or above a rigid obstacle, and it is in adhesive
contact with the obstacle. We follow the exposition in [164], where the model
was constructed, the existence of the unique solution proved, convergence of
a numerical method established, and some simulations presented.

The problem has interest by and of itself, but it also contains all the
ingredients of the models for adhesion in a setting that is mathematically
simpler to analyze, and is much easier to visualize.

Let Ω denote the projection of the membrane on the xy plane, let z =
φ(x, y) represent the location of the rigid obstacle, and let ΩT = Ω × (0, T ).

membrane

obstaclez = φ

Ω

z

y

x

Γ
u�

f �

������������

�

�

Fig. 10. The membrane above the obstacle
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The membrane is being acted upon by a vertical force f = f(x, y, t), and
the contact between the membrane and the obstacle involves adhesion. The
setting is depicted in Fig. 10.

We let u = u(x, y, t) represent the vertical displacement of the membrane,
and let ξ = ξ(x, y, t) be the reaction force of the obstacle, both positive when
directed upwards.

The process is assumed to be quasistatic, so we neglect the inertial term in
the equation of motion. The membrane is restricted to lie above the obstacle,

u ≥ φ in ΩT . (11.6.1)

When contact between the membrane and the obstacle takes place the ob-
stacle’s reaction force ξ is directed upward and exactly cancels the applied
force,

u = φ implies ξ ≥ 0 in ΩT . (11.6.2)

The reaction force vanishes when there is no contact, thus

u > φ implies ξ = 0 in ΩT . (11.6.3)

We may write (11.6.1)–(11.6.3) into the the following equivalent complemen-
tarity condition

u ≥ φ, ξ ≥ 0, ξ(u− φ) = 0 in ΩT . (11.6.4)

We assume that the glue is spread over the whole of the obstacle. The
adhesive restoring force η = η(x, y, t) is directed downward, trying to prevent
the separation of the membrane from the obstacle, and is assumed propor-
tional to the distance from the obstacle and to β2 (see, e.g., [160]),

η = −κ(u− φ)β2 in ΩT ,

where κ is the bonding coefficient or interface stiffness, β = β(x, y, t) is the
adhesion field, and κβ2 is the surface adhesive spring constant. When the
membrane is in contact there is no adhesive restoring force, i.e., η = 0, and
it follows from (11.6.1) that η ≤ 0.

The process is assumed irreversible and the evolution of the adhesion field
is given by

β̇ = −γκ(u− φ)2β in ΩT .

Here γ > 0 is the adhesion rate constant. Initially

β(x, y, 0) = β0(x, y) in Ω,

where β0 is a given glue distribution.
We turn to describe the obstacle’s reaction force ξ. To this end let I(−∞,0]

denote the indicator function of the interval (−∞, 0], and its subdifferential
is given in (4.2.10), Fig. 7. Using it we may rewrite condition (11.6.4) in the
form
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ξ ∈ ∂I(−∞,0](φ− u).

Let f be a given force acting on the membrane, such as gravity. The
elastic force in the membrane is −∆u, where ∆ is the Laplace operator, and
the balance of forces is

−∆u− f − η = ξ.

Then, using the expression for η and the inclusion for ξ, the quasistatic equa-
tion of motion of the membrane can be written as the inclusion

−∆u− f + κ(u− φ)β2 ∈ ∂I(−∞,0](φ− u) in ΩT .

To complete the model we specify the displacements u = gR on the bound-
ary Γ = ∂Ω, for 0 ≤ t ≤ T . The function gR just describes the hight of the
rigid rim above the xy plane.

Collecting the equations and conditions above, the classical formulation
of the problem of quasistatic adhesive contact between a membrane and a
rigid obstacle is as follows.

Problem Pme−adh. Find a displacement field u : Ω × [0, T ] → R, and an
adhesion field β : ΓC × [0, T ] → [0, 1] such that

−∆u− f + κ(u− φ)β2 ∈ ∂I(−∞,0](φ− u) in ΩT , (11.6.5)

β̇ = −γκ(u− φ)2β in ΩT , (11.6.6)
u = gR on Γ × (0, T ), (11.6.7)
β(0) = β0 in Ω. (11.6.8)

The classical obstacle problem for the membrane is obtained when β ≡ 0.

We observe that the problem is, as most contact problems are, a free
boundary problem. Indeed, let

Λ(t) = {(x, y) ∈ Ω : u(x, y, t) = φ(x, y)}

be the contact set, then its boundary Γ ∗ = Γ ∗(t) = ∂Λ(t) is the free boundary
separating the contact set from the set where the membrane is above the
obstacle. However, the free boundary aspects of the problem, such as the
regularity and shape of Γ ∗ are unresolved, yet.

We assume that the domain Ω is Lipschitz so we can apply the Sobolev
embedding theorem. We make the following assumptions on the problem
data:

f ∈ W 1,∞(0, T ;L2(Ω)), (11.6.9)
κ > 0, γ > 0, (11.6.10)
φ ∈ C(Ω), φ ≤ gR on Ω, (11.6.11)
gR ∈ H1/2(Γ ), (11.6.12)
β0 ∈ L∞(Ω), 0 < β0 ≤ 1 a.e. on Ω. (11.6.13)
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We proceed to obtain a variational formulation of problem (11.6.5) –
(11.6.8). For the sake of simplicity we assume that gR ≡ 0, since otherwise,
we need only to make a simple change of the variable u. Therefore, we use
the space H1

0 (Ω) for the displacement field and let the set of admissible
displacements be given by

K = {v ∈ H1
0 (Ω) : v ≥ φ in Ω}.

It follows from (11.6.11) that 0 ∈ K, so the set K is not empty. Also, K
is a closed convex subset of H1

0 (Ω).
Next, let t ∈ [0, T ] be fixed, and for the sake of simplicity we write u(t)

instead of u(x, y, t), for (x, y) ∈ Ω. Then, we multiply both sides of (11.6.5)
by (v − u(t)), where v ∈ K is a test function, and integrate over Ω. Us-
ing the divergence theorem and the boundary condition u = 0, after some
manipulations we obtain the following variational formulation of problem
(11.6.5)–(11.6.8)

Problem PVme−adh. Find a displacements field u : [0, T ] → H1
0 (Ω) and an

adhesion field β : [0, T ] → L∞(Ω) such that

u(t) ∈ K,

∫
Ω

∇u(t) · ∇(v − u(t)) dx+ κ

∫
Ω

(u(t) + g − φ)β2(v − u(t)) dx

≥
∫
Ω

f(v − u(t)) dx ∀v ∈ K, t ∈ [0, T ], (11.6.14)

β̇(t) = −γκ(u(t) + g − φ)2β(t), 0 ≤ β(t) ≤ 1, a.e. t ∈ (0, T ), (11.6.15)

β(0) = β0. (11.6.16)

We have the following existence and uniqueness result ( [164]).

Theorem 11.6.1. Under the assumptions (11.6.9)− (11.6.13), there exists a
unique solution (u, β) of Problem PVme−adh. Moreover, the solution satisfies

u ∈ W 1,∞(0, T ;H1
0 (Ω)) ∩ L∞(0, T ;H2(Ω)), β ∈ W 1,∞(0, T ;L∞(Ω)).

The proof of Theorem 11.6.1 can be found in [164], and is based on stan-
dard results for the classical membrane problem together with a fixed-point
argument for the adhesion field. There, a numerical algorithm for the prob-
lem was described and implemented, and numerical simulations of the process
presented.

We conclude that the mechanical problem Pme−adh has a unique weak
solution, which solves (11.6.14)–(11.6.16).

The dynamic obstacle problem for the membrane, where the acceleration
is taken into account, and with a general adhesive evolution law, has been
considered in [165] where the existence of a weak solution was proved.



12 Contact with Damage

We describe new results dealing with contact problems for materials that may
undergo internal damage, resulting from strains and stresses which lead to
the opening and growth of microscopic cracks. The damage measures the de-
terioration of the strength of the material in that it reduces the load carrying
capacity of the body. A novel way to model material damage was proposed
in [171, 172], where the damage field was introduced, and the system evolu-
tion, including that of the damage field, was derived from the principle of
virtual work. Although the engineering literature dealing with damage and
cracks is extensive, mathematical publications on problems with damage, us-
ing the notion of damage field, are few. However, their number and scope are
on the increase.

In Sect. 12.1 we present a model for the contact of a viscoelastic material
with damage and with the normal compliance contact condition. The sys-
tem now contains, in addition, a parabolic inclusion for the evolution of the
damage field. A variational formulation is presented and the theorem on the
existence of the unique weak solution stated. The proof of the theorem is
given in Sect. 12.2, and is accomplished in a number of steps based on fixed
point arguments.

In Sect. 12.3 the problem of contact of a viscoelastic material with dam-
age, with the normal damped response contact condition is described. The
existence of the unique solution, under a smallness condition on the contact
data, is stated. An outline of the steps in the proof is provided.

Finally, in Sect. 12.4 we describe the problem for a viscoplastic material
with damage, with a general dissipative frictional potential. The existence of
the unique weak solution is stated, and a short description of the steps of the
proof are provided.

We note that the existence results described below are global in time.
However, this is a consequence of the fact that we use truncated damage
source functions. These results may be considered as local existence results
(in time), valid on the time interval on which the damage is strictly greater
than the truncation value, since on such an interval the original and the
truncated source functions coincide.

In this chapter we use dimensionless variables.

M. Shillor, M. Sofonea, J.J. Telega: Models and Analysis of Quasistatic Contact, Lect. Notes
Phys. 655, (2001), 207–222
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004
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12.1 Viscoelastic Contact
with Normal Compliance and Damage

Most of the results presented in Chap. 8 may be extended to include the evo-
lution of the damage of the viscoelastic material. As an example, we rewrite
problem Pve−nc, studied in Sect. 8.3, to include material damage. We assume
that the damage does not affect the viscosity of the material, but only its
elastic behavior, and therefore we use (6.4.11) as constitutive law.

The classical formulation of the viscoelastic contact problem with normal
compliance, friction and damage is as follows.

Problem Pve−ncd. Find a displacement field u : Ω × [0, T ] → R
d, a stress

field σ : Ω × [0, T ] → S
d, and a damage field ζ : Ω × [0, T ] → R such that

σ = Ave ε(u̇) + Bve(ε(u), ζ) in ΩT , (12.1.1)

ζ̇ − kDam�ζ + ∂I[0,1](ζ) 
 φ(ε(u), ζ) in ΩT , (12.1.2)

Div σ + fB = 0 in ΩT , (12.1.3)

∂ζ

∂n
= 0 on Γ × (0, T ), (12.1.4)

u = 0 on ΓD × (0, T ), (12.1.5)

σn = fN on ΓN × (0, T ), (12.1.6)

−σn = pn(un − g),
‖στ‖ ≤ pτ (un − g),

στ = −µpτ (un − g)
u̇τ

‖u̇τ‖
if u̇τ �= 0




on ΓC × (0, T ), (12.1.7)

u(0) = u0, ζ(0) = ζ0 in Ω. (12.1.8)

Here, (12.1.2) is the differential parabolic inclusion for the evolution of the
damage field, (3.4.1), in which kDam > 0 is the microcrack diffusion constant;
∂ζ/∂n = ∇ζ · n is the normal derivative of ζ on Γ ; and ζ0 is a prescribed
initial damage field, chosen as zero in a damage-free material. We recall that
the subdifferential term ∂I[0,1](ζ) in (12.1.2) guarantees that ζ remains in the
interval [0, 1], to preserve its interpretation as a fraction.

The choice of the homogeneous Neumann boundary condition for ζ fol-
lows [171, 172], and means that there is no influx of microcracks across the
boundary. Other boundary conditions may be used too, however, when using
the Dirichlet condition, one has to make it clear how is the damage of the
boundary controlled.

Next, we derive a weak formulation for Problem Pve−ncd. We introduce
the bilinear form a : H1(Ω) ×H1(Ω) → R given by

a(ξ, η) = kDam

∫
Ω

∇ξ · ∇η dx, (12.1.9)
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and let K denote the convex set of admissible damage functions

K = {ξ ∈ H1(Ω) : ξ ∈ [0, 1] a.e. in Ω}. (12.1.10)

We assume that the viscosity operator Ave satisfies condition (6.4.4), the
compliance functions satisfy (8.3.9) and the data fB , fN , g and u0 satisfy
conditions (8.3.10)–(8.3.12). Recall that examples of compliance functions
which satisfy assumptions (8.3.9) have been presented in Sect. 8.3.

The elasticity operator Bve, which in this problem depends on the damage,
the damage source function φ and the initial damage ζ0 satisfy:

(a) Bve : Ω × S
d × R → S

d.

(b) There exists an LB > 0 such that
‖Bve(x, ε1, ζ1) − Bve(x, ε2, ζ2)‖ ≤
LB (‖ε1 − ε2‖ + |ζ1 − ζ2|)
∀ ε1, ε2 ∈ S

d, ζ1, ζ2 ∈ R, a.e. x ∈ Ω.

(c) For any ε ∈ S
d and ζ ∈ R ,x �→ Bve(x, ε, ζ)

is measurable on Ω.

(d) The mapping x �→ Bve(x,0, 0) ∈ Q.




(12.1.11)

(a) φ : Ω × S
d × R → R.

(b) There exists an Lφ > 0 such that
|φ(x, ε1, ζ1) − φ(x, ε2, ζ2)| ≤
Lφ (‖ε1 − ε2‖ + |ζ1 − ζ2|)
∀ ε1, ε2 ∈ S

d, ζ1, ζ2 ∈ R, a.e. x ∈ Ω.

(c) For any ε ∈ S
d and ζ ∈ R , x �→ φ(x, ε, ζ)

is measurable on Ω.

(d) The mapping x �→ φ(x,0, 0) ∈ L2(Ω).




(12.1.12)

ζ0 ∈ K. (12.1.13)

We note that assumptions (6.4.4) and (12.1.11) are rather routine. On
the other hand, assumptions (12.1.12) on φ are more delicate. Indeed, the
damage source function φFr given in (3.4.3) does not satisfy them. The issue
is that once the damage is complete and ζ = 0, the mechanical system may
break down and may not support any load. Mathematically, we have the
‘quenching’ of the solution, and some of its derivatives become unbounded.

To overcome this difficulty, one can consider φ as a truncated version of
φFr, valid as long as 0 < ζ∗ ≤ ζ, for some small ζ∗. Therefore, we consider
the damage problems studied in this chapter as approximations of damage
problems of the type represented by φFr. The solutions of these models coin-
cide as long as ζ∗ ≤ ζ. However, as was already noted in Sect. 3.4, the models
themselves become inappropriate when the damage is close to zero, since the
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underlying assumptions become invalid. Moreover, we note that there is a
mathematical need to truncate the quadratic strain term in φFr, too.

Thus, we may consider φ as

φ(ε(u), ζ) =




φFr(ε(u), ζ) if ζ∗ ≤ ζ ≤ 1 and ‖ε(u)‖ ≤ e∗

φFr(e∗, ζ) if ζ∗ ≤ ζ ≤ 1 and ‖ε(u)‖ > e∗

φFr(e∗, ζ∗) if 0 ≤ ζ < ζ∗ and ‖ε(u)‖ > e∗

φFr(ε(u), ζ∗) if 0 ≤ ζ < ζ∗ and ‖ε(u)‖ ≤ e∗

,

where e∗ is a given strain energy bound. It follows that

φ(ε(u), ζ) = λD

(
1 − ζ

ζ

)
− 1

2
λE ε(u) · ε(u) + λw,

when ζ∗ ≤ ζ ≤ 1 and ‖ε(u)‖ ≤ e∗.
These mathematical difficulties are of little applied interest since in ap-

plications truncating φ and restricting ζ and ε(u) to 0 < ζ∗ ≤ ζ and
‖ε(u)‖ ≤ e∗, for appropriate choices of ζ∗ and e∗, will provide sufficiently
accurate description of the system evolution.

The mathematical problem without truncation is very difficult; gener-
ally, it is likely to lead to only local solutions, and it remains an open and
challenging problem. We expand on this issue in Chap. 14.

If we model the damage source with the function φ which is given in
(3.4.4) we do not encounter the difficulty mentioned above concerning com-
plete damage, i.e., ζ = 0, since the function is Lipschitz when 0 ≤ ζ ≤ 1,
and so we may use it without the restriction 0 < ζ∗ ≤ ζ. However, we do
have the need to truncate the quadratic strain term by using the truncation
‖ε(u)‖ ≤ e∗. Therefore, all the results below apply to the problem with such
a damage source function with the strain energy truncation.

Using standard arguments we obtain the following variational formulation
of the problem.

Problem PVve−ncd. Find a displacement field u : [0, T ] → V , a stress field
σ : [0, T ] → Q1, and a damage field ζ : [0, T ] → H1(Ω), such that

σ(t) = Ave(ε(u̇(t))) + Bve(ε(u(t)), ζ(t)), (12.1.14)

(σ(t), ε(w) − ε(u̇(t)))Q + j(u(t),w) − j(u(t), u̇(t))
≥ (F(t),w − u̇(t))V ∀w ∈ V, (12.1.15)

for all t ∈ [0, T ];

ζ(t) ∈ K, (ζ̇(t), ξ − ζ(t))L2(Ω) + a(ζ(t), ξ − ζ(t))
≥ (φ(ε(u(t)), ζ(t)), ξ − ζ(t))L2(Ω) ∀ξ ∈ K, (12.1.16)

for almost any t ∈ (0, T ), and
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u(0) = u0, ζ(0) = ζ0. (12.1.17)

Here, F is given in (8.3.13), j in (8.3.14), and V and Q1 denote the spaces
given by (6.2.3) and (6.2.10), respectively.

The following existence and uniqueness result for the problem has been
established in [178].

Theorem 12.1.1. Assume that (6.4.4), (8.3.9)–(8.3.12), (12.1.11)–(12.1.13)
hold. Then Problem PVve−ncd has a unique solution (u,σ, ζ). Moreover, the
solution satisfies

u ∈ C1([0, T ];V ), σ ∈ C([0, T ];Q1),

ζ ∈ W 1,2(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).

The proof of Theorem 12.1.1 is presented in the next section.
We conclude from this theorem that, under the previous assumptions,

Problem Pve−ncd has a unique weak solution (u,σ, ζ).

12.2 Proof of Theorem 12.1.1

The proof is based on classical results for elliptic and parabolic variational
inequalities and fixed point arguments. It is carried out in several steps. We
assume in the following that the assumptions of Theorem 12.1.1 hold and we
denote by c a generic positive constant which depends on the problem data,
but does not depend on time. Let η ∈ C([0, T ];Q) and θ ∈ C([0, T ];L2(Ω)) be
given. The first is a prescribed stress due to the elastic part of the constitutive
relation and the second is a given source of damage. In the first step we
consider the following two auxiliary problems.

Problem DPη. Find a displacement field uη : [0, T ] −→ V and a stress field
ση : [0, T ] −→ Q1 such that

ση(t) = Aveε(u̇η(t)) + η(t), (12.2.1)

(ση(t), ε(w) − ε(u̇η(t)))Q + j(uη(t),w) − j(uη(t), u̇η(t))
≥ (F(t),w − u̇η(t))V ∀w ∈ V, (12.2.2)

for all t ∈ [0, T ], and
uη(0) = u0. (12.2.3)

Problem DPθ. Find a damage field ζθ : [0, T ] −→ H1(Ω) such that

ζθ(t) ∈ K, (ζ̇θ(t), ξ − ζθ(t))L2(Ω) + a(ζθ(t), ξ − ζθ(t))
≥ (θ(t), ξ − ζθ(t))L2(Ω) ∀ ξ ∈ K, (12.2.4)
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for almost any t ∈ (0, T ), and

ζθ(0) = ζ0. (12.2.5)

In this manner the problem is split into two independent problems: the
contact problem DPη, and the one for damage, DPθ.

To solve Problem DPη we need the following result.

Lemma 12.2.1. Let ξ ∈ C([0, T ];V ). Then, there exists a unique function
vηξ ∈ C([0, T ];V ) such that for all t ∈ [0, T ],

(Aveε(vηξ(t)), ε(w) − ε(vηξ(t)))Q + (η(t), ε(w) − ε(vηξ(t)))Q
+j(ξ(t),w) − j(ξ(t),vηξ(t)) ≥ (F(t),w − vηξ(t))V ∀w ∈ V. (12.2.6)

Proof. It follows from Theorem 6.3.2 that there exists a unique function vηξ :
[0, T ] → V which solves the time-dependent elliptic variational inequality
(12.2.6). To establish that vηξ ∈ C([0, T ];V ), let t1, t2 ∈ [0, T ] and denote
by ηi = η(ti), ξi = ξ(ti), Fi = F(ti) and vi = vηξ(ti), i = 1, 2. By using
algebraic manipulations from (12.2.6) we obtain

(Aveε(v1) − Aveε(v2), ε(v1) − ε(v2))Q (12.2.7)
≤ (F1 − F2,v1 − v2)V + (η1 − η2, ε(v2) − ε(v1))Q

+j(ξ1,v2) − j(ξ1,v1) + j(ξ2,v1) − j(ξ2,v2).

The left side is bounded from below by (6.4.4),

(Aveε(v1) − Aveε(v2), ε(v1) − ε(v2))Q ≥ mA ‖v1 − v2‖2
V .

The last four terms on the right-hand side of (12.2.7) are bounded, due to
(8.3.9), by

j(ξ1,v2) − j(ξ1,v1) + j(ξ2,v1) − j(ξ2,v2) ≤ c ‖ξ1 − ξ2‖V ‖v1 − v2‖V .

Using these bounds in (12.2.7) yields

‖v1 − v2‖V ≤ c
(
‖F1 − F2‖V + ‖η1 − η2‖Q + ‖ξ1 − ξ2‖V

)
. (12.2.8)

Then, the conclusion that vηξ ∈ C([0, T ];V ) follows from the continuity of
F,η, and ξ in the respective spaces V , Q and V . �

Using Lemma 12.2.1 we now show the following existence and uniqueness
result for Problem DPη.

Lemma 12.2.2. There exists a unique solution to Problem DPη such that
uη ∈ C1([0, T ];V ), ση ∈ C([0, T ];Q1).
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Proof. We consider the operator Λη : C([0, T ];V ) −→ C([0, T ];V ) defined by

Ληξ(t) = u0 +
∫ t

0
vηξ(s) ds ∀ ξ ∈ C([0, T ];V ), t ∈ [0, T ], (12.2.9)

where vηξ is the solution of (12.2.6). We show that this operator has a unique
fixed point ξη ∈ C([0, T ];V ). To this end, let ξ1, ξ2 ∈ C([0, T ];V ) and denote
by vi = vηξi , i = 1, 2, the corresponding solutions of (12.2.6). Using the
definition (12.2.9) we obtain

‖Ληξ1(t) − Ληξ2(t)‖V ≤
∫ t

0
‖v1(s) − v2(s)‖V ds ∀ t ∈ [0, T ]. (12.2.10)

Moreover, using estimates similar to those leading to (12.2.8), we have

‖v1(s) − v2(s)‖V ≤ c ‖ξ1(s) − ξ2(s)‖V ∀ s ∈ [0, T ].

Substituting this inequality in (12.2.10) yields

‖Ληξ1(t) − Ληξ2(t)‖V ≤ c

∫ t

0
‖ξ1(s) − ξ2(s)‖V ds ∀ t ∈ [0, T ]. (12.2.11)

By reiterating this inequality n times we obtain

‖Λnηξ1 − Λnηξ2‖C([0,T ];V ) ≤ cn

n!
‖ξ1 − ξ2‖C([0,T ];V ).

This shows that for n sufficiently large the operator Λnη is a contraction in
C([0, T ], V ). Therefore, it follows from Theorem 6.3.9 that there exists a
unique element ξη ∈ C([0, T ], V ) such that Λnηξη = ξη and ξη is also the
unique fixed point of Λη.

Next, let vη ∈ C([0, T ];V ), uη ∈ C1([0, T ];V ) and ση ∈ C([0, T ];Q) be
given, for all t ∈ [0, T ], by

vη(t) = vηξη
(t), (12.2.12)

uη(t) = u0 +
∫ t

0
vη(s) ds, (12.2.13)

ση(t) = Aveε(vη(t)) + η(t). (12.2.14)

Clearly, (12.2.1) and (12.2.3) are satisfied. Moreover, by (12.2.13), (12.2.12)
and (12.2.9) it follows that uη = ξη and u̇η = vη. Therefore, if we let ξ = ξη
in (12.2.6) we obtain (12.2.2).

To establish the regularity of ση, we choose w = u̇η±ϕ with ϕ ∈ C∞
0 (Ω)d

in (12.2.2) to obtain

(ση(t), ε(ϕ))Q = (F(t),ϕ)V ∀ϕ ∈ C∞
0 (Ω)d, t ∈ [0, T ].
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Recalling the definition (8.3.13) of the term (F(t),ϕ)V , we obtain

Div ση(t) + fB(t) = 0 ∀t ∈ [0, T ]. (12.2.15)

Now, assumption (8.3.10) and equation (12.2.15) imply that ση ∈ C([0, T ]; Q1).
This establishes the existence claim in Lemma 12.2.2. The uniqueness

claim follows directly from (12.2.1)–(12.2.3), using (6.4.4), (8.3.9) and Gron-
wall’s inequality (Lemma 6.3.11). �

We prove next the unique solvability of Problem DPθ. By an application
of Theorem 6.3.7, with V = H1(Ω) and H = L2(Ω), the following result
holds.

Lemma 12.2.3. There exists a unique solution ζθ of Problem DPθ, and

ζθ ∈ W 1,2(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).

As a consequence of Lemmas 12.2.2 and 12.2.3, and the assumptions
(12.1.11) and (12.1.12), we may define the operator

Λ : C([0, T ];Q× L2(Ω)) −→ C([0, T ];Q× L2(Ω)),

by
Λ(η, θ) =

(
Bve(ε(uη), ζθ), φ(ε(uη), ζθ)

)
, (12.2.16)

for all (η, θ) ∈ C([0, T ];Q× L2(Ω)).
The next step is to investigate this operator.

Lemma 12.2.4. The operator Λ has a unique fixed point (η∗, θ∗) ∈ C([0, T ];
Q× L2(Ω)).

Proof. Let (η1, θ1), (η2, θ2) ∈ C([0, T ];Q × L2(Ω)) and let t ∈ [0, T ]. Using
(12.2.16), (12.1.11) and (12.1.12) we deduce that

‖Λ(η1, θ1)(t) − Λ(η2, θ2)(t)‖Q×L2(Ω)

≤ c
(
‖uη1(t) − uη2(t)‖V + ‖ζθ1(t) − ζθ2(t)‖L2(Ω)

)
. (12.2.17)

Moreover, it follows from (12.2.13) that

‖uη1(t) − uη2(t)‖V ≤
∫ t

0
‖vη1(s) − vη2(s)‖V ds. (12.2.18)

Using (12.2.1), (12.2.2) and estimates similar to those in the proof of Lemma
12.2.1 (see (12.2.8)) we find that for s ∈ [0, T ],

‖vη1(s) − vη2(s)‖V ≤ c (‖η1(s) − η2(s)‖Q + ‖uη1(s) − uη2(s)‖V ). (12.2.19)

Combining (12.2.18) and (12.2.19), and using Gronwall’s inequality, we have
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‖uη1(t) − uη2(t)‖V ≤ c

∫ t

0
‖η1(s) − η2(s)‖Q ds. (12.2.20)

On the other hand, (12.2.4), (12.2.5) imply that

‖ζθ1(t) − ζθ2(t)‖L2(Ω) ≤ c

∫ t

0
‖θ1(s) − θ2(s)‖L2(Ω)ds. (12.2.21)

Using now (12.2.17), (12.2.20) and (12.2.21) we find

‖Λ(η1, θ1)(t) − Λ(η2, θ2)(t)‖Q×L2(Ω)

≤ c

∫ t

0
‖(η1, θ1)(s) − (η2, θ2)(s)‖Q×L2(Ω)ds. (12.2.22)

By iterating this inequality n times, for n sufficiently large, Lemma 12.2.4
follows from the Banach fixed-point theorem (Theorem 6.3.9). �

We have now all the ingredients needed to prove Theorem 12.1.1.

Proof (Theorem 12.1.1). Existence. Let (uη∗ ,ση∗) be the solution of (12.2.1)–
(12.2.3) for η = η∗ and let ζθ∗ be the solution of (12.2.4)–(12.2.5) for θ = θ∗.
Since η∗ = Bve(ε(uη∗), ζ∗

θ ) and θ∗ = φ(ε(uη∗), ζ∗
θ ), it is straightforward to

see that (uη∗ ,ση∗ , ζθ∗) is a solution of problem (12.1.14)–(12.1.17). The reg-
ularity of the solution, i.e., uη∗ ∈ C1([0, T ];V ), ση∗ ∈ C([0, T ];Q1), and
ζθ∗ ∈ W 1,2(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) follow from Lemmas 12.2.2 and
12.2.3.

Uniqueness. Let (uη∗ ,ση∗ , ζη∗) be the solution of (12.1.14)–(12.1.17) ob-
tained above and let (u,σ, ζ) be another solution of the problem such that u ∈
C1([0, T ];V ), σ ∈ C([0, T ];Q1) and ζ ∈ W 1,2(0, T ;L2(Ω))∩L2(0, T ;H1(Ω)).
We denote by η ∈ C([0, T ];Q) and θ ∈ C([0, T ];L2(Ω)) the functions

η = B(ε(u), ζ), θ = φ(ε(u), ζ). (12.2.23)

Now, (12.1.14), (12.1.15) and (12.1.17) imply that (u,σ) is a solution of
Problem DPη. Using Lemma 12.2.2 it follows that this problem has a unique
solution uη ∈ C1([0, T ];V ), ση ∈ C([0, T ];Q1) and so we conclude that

u = uη, σ = ση. (12.2.24)

Next, (12.1.16), (12.1.17) and a similar argument yield

ζ = ζθ. (12.2.25)

Using now (12.2.16), (12.2.24), (12.2.25) and (12.2.23) we obtain Λ(η, θ) =
(η, θ) and by the uniqueness of the fixed point of the operator Λ, ensured by
Lemma 12.2.4, we deduce

η = η∗, θ = θ∗. (12.2.26)

The uniqueness of the solution is now a consequence of (12.2.24)–(12.2.26).�
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12.3 Viscoelastic Contact
with Normal Damped Response and Damage

We describe now a contact problem for a viscoelastic material with damage
and, following [179], we use the normal damped response contact condition.
We note that this is an extension problem of Pve−d, studied in Sect. 8.6, when
the damage of the material is taken into account. As in Sect. 12.1, we assume
that the damage does not affect the viscosity of the material, only its elastic
behavior.

The classical formulation of the viscoelastic contact problem with normal
damped response, friction and damage is the following.

Problem Pve−dd. Find a displacement field u : Ω× [0, T ] → R
d, a stress field

σ : Ω × [0, T ] → S
d and a damage field ζ : Ω × [0, T ] → R such that

σ = Aveε(u̇) + Bve(ε(u), ζ) in ΩT , (12.3.1)

ζ̇ − kDam�ζ + ∂I[0,1](ζ) 
 φ(ε(u), ζ) in ΩT , (12.3.2)

Div σ + fB = 0 in ΩT , (12.3.3)

∂ζ

∂n
= 0 on Γ × (0, T ), (12.3.4)

u = 0 on ΓD × (0, T ), (12.3.5)

σn = fN on ΓN × (0, T ), (12.3.6)

−σn = pn(u̇n),
‖στ‖ ≤ pτ (u̇n),

στ = −pτ (u̇n)
u̇τ

‖u̇τ‖
if u̇τ �= 0




on ΓC × (0, T ), (12.3.7)

u(0) = u0, ζ(0) = ζ0 in Ω. (12.3.8)

Here, ∂ζ/∂n is the normal derivative of ζ on Γ , ζ0 is a prescribed initial
damage field, chosen as one in a damage-free material, and kDam > 0 is is
the microcrack diffusion constant.

Next, we derive a weak formulation for Problem Pve−dd. We assume that
the viscosity operator Ave satisfies condition (6.4.4), the normal and tangen-
tial damped response functions satisfy (8.6.12) and the data fB , fN and u0
satisfy conditions (8.6.13) and (8.6.14). The elasticity operator Bve, which
depends on the damage, the damage source function φ, and initial damage
ζ0 satisfy conditions (12.1.11), (12.1.12) and (12.1.13), respectively.

Examples of normal and tangential damped response functions which sat-
isfy the assumptions (8.6.12) have been presented in Sect. 8.6.

Using standard arguments we obtain the following variational formulation
of the problem.

Problem PVve−dd. Find a displacement field u : [0, T ] → V , a stress field
σ : [0, T ] → Q1, and a damage field ζ : [0, T ] → H1(Ω) , such that
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σ(t) = Ave(ε(u̇(t))) + Bve(ε(u(t)), ζ(t)), (12.3.9)

(σ(t), ε(w) − ε(u̇(t)))Q + j(u̇(t),w) − j(u̇(t), u̇(t))
≥ (F(t),w − u̇(t))V ∀w ∈ V, (12.3.10)

for all t ∈ [0, T ],

ζ(t) ∈ K, 〈ζ̇(t), ξ − ζ(t))L2(Ω) + a(ζ(t), ξ − ζ(t))
≥ (φ(ε(u(t)), ζ(t)), ξ − ζ(t))L2(Ω) ∀ξ ∈ K, (12.3.11)

for a.e. t ∈ (0, T ), and

u(0) = u0, ζ(0) = ζ0. (12.3.12)

Here, we used (8.3.13) for the function F, (8.6.15) for the surface functional
j, (12.1.9) for the bilinear form a, and (12.1.10) for the set of admissible
damage functions K.

The following existence and uniqueness result for the problem has been
established in [179].

Theorem 12.3.1. Assume that (6.4.4), (8.6.12)–(8.6.14), (12.1.11)–(12.1.13)
hold. Then, there exists a constant L0 > 0, which depends only on Ω,ΓD,
ΓC and Ave, such that Problem PVve−dd has a unique solution (u,σ, ζ), if
Ln + Lτ < L0. Moreover, the solution satisfies

u ∈ C1([0, T ];V ), σ ∈ C([0, T ];Q1),

ζ ∈ W 1,2(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).

We conclude that when the Lipschitz constants of the contact functions
pn and pτ are sufficiently small, Problem Pve−dd has a unique weak solution
(u,σ, ζ). We note that the critical value L0 does not depend on the damage
data.

Proof. The proof of Theorem 12.3.1 is similar to that of Theorems 12.1.1 and
8.6.1 and is obtained in several steps. Since the modifications are straightfor-
ward, we omit most of the details. The steps are as follows.

(i) Let η ∈ C([0, T ];Q) – the elastic stress, and θ ∈ C([0, T ];L2(Ω)) – the
damage source function, be given. In the first step we consider the problem of
finding a displacement field uη : [0, T ] → V and a stress field ση : [0, T ] → Q1
such that

ση(t) = Ave(ε(u̇η(t))) + η(t), (12.3.13)

(ση(t), ε(w) − ε(u̇η(t)))Q + j(u̇η(t),w) − j(u̇η(t), u̇η(t)) (12.3.14)
≥ (F(t),w − u̇η(t))V ∀w ∈ V,

for all t ∈ [0, T ], and
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uη(0) = u0. (12.3.15)

We also consider the problem of finding a damage field ζθ : [0, T ] −→ H1(Ω)
such that

ζθ(t) ∈ K, (ζ̇θ(t), ξ − ζθ(t))L2(Ω) + a(ζθ(t), ξ − ζθ(t)) (12.3.16)
≥ (θ(t), ξ − ζθ(t))L2(Ω) ∀ξ ∈ K,

for almost any t ∈ (0, T ), and
ζθ(0) = ζ0. (12.3.17)

We prove that there exists L0 > 0, which depends only on Ω, ΓD, ΓC and
Ave, such that problem (12.3.13)–(12.3.15) has a unique solution (uη,ση),
and

uη ∈ C1([0, T ];V ), ση ∈ C([0, T ];Q1),

if Ln+Lτ < L0. Moreover, problem (12.3.16)–(12.3.17) has a unique solution
ζθ such that

ζθ ∈ W 1,2(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).

(ii) Next, we assume that Ln + Lτ < L0. As a consequence of step
(i), (12.1.11) and (12.1.12), we may define the operator Λ : C([0, T ];Q ×
L2(Ω)) −→ C([0, T ];Q× L2(Ω)) by

Λ(η, θ) =
(
Bve(ε(uη), ζθ), φ(ε(uη), ζθ)

)
, (12.3.18)

for all (η, θ) ∈ C([0, T ];Q×L2(Ω)). Using the Banach theorem we prove that
the operator Λ has a unique fixed point (η∗, θ∗) ∈ C([0, T ];Q× L2(Ω)).

(iii) Let (uη∗ ,ση∗) be the solution of (12.3.13)–(12.3.15) for η = η∗ and
let ζθ∗ be the solution of (12.3.16)–(12.3.17) for θ = θ∗. It is straightforward
to show that (uη∗ ,ση∗ , ζθ∗) is a solution of problem (12.3.9)–(12.3.12) such
that uη∗ ∈ C1([0, T ];V ), ση∗ ∈ C([0, T ];Q1) and ζθ∗ ∈ W 1,2(0, T ;L2(Ω)) ∩
L2(0, T ;H1(Ω)). The uniqueness of this solution follows from the uniqueness
of the fixed point of the operator Λ. �

12.4 Viscoplastic Contact with Dissipative Friction
Potential and Damage

Most of the results that were presented in Chap. 9 may be extended to
include the damage of a viscoplastic material. As an example, we describe
the problem Pvp−d, studied in Sect. 9.6, with added material damage.

The results presented in what follows have been obtained in [23]. The vari-
ational and numerical analysis of the Signorini frictionless contact problem
for viscoplastic materials with damage has been recently performed in [180].
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The classical formulation of the viscoplastic contact problem with dissi-
pative frictional potential and damage is the following.

Problem Pvp−dd. Find a displacement field u : Ω × [0, T ] → R
d, a stress

field σ : Ω × [0, T ] → S
d, and a damage field ζ : [0, T ] → H1(Ω), such that

σ̇ = Avpε(u̇) + Gvp(σ, ε(u), ζ) in ΩT , (12.4.1)

ζ̇ − kDam�ζ + ∂I[0,1](ζ) 
 φ(σ, ε(u), ζ) in ΩT , (12.4.2)
Div σ + fB = 0 in ΩT , (12.4.3)

∂ζ

∂n
= 0 on Γ × (0, T ), (12.4.4)

u = 0 on ΓD × (0, T ), (12.4.5)
σn = fN on ΓN × (0, T ), (12.4.6)

u ∈ U, −σ n · (v − u̇) ≤ ϕ(v) − ϕ(u̇)
∀v ∈ U on ΓC × (0, T ), (12.4.7)

u(0) = u0, σ(0) = σ0 ζ(0) = ζ0 in Ω. (12.4.8)

Here, (12.4.1) represents the viscoplastic constitutive law with damage,
(6.4.12), and (12.4.2) is the evolution equation for the damage field, (3.4.5),
in which kDam > 0. Examples of contact and friction laws which lead to an
inequality of the form (12.4.7) can be found in Sect. 7.4.

We make the following assumptions on the functions Gvp and φ:

(a) Gvp : Ω × S
d × S

d × R → S
d.

(b) There exists Lvp > 0 such that
‖Gvp(x,σ1, ε1, ζ1) − Gvp(x,σ2, ε2, ζ2)‖
≤ Lvp (‖σ1 − σ2‖ + ‖ε1 − ε2‖ + |ζ1 − ζ2|)
∀σ1,σ2, ε1, ε2 ∈ S

d, ζ1, ζ2 ∈ R, a.e. x ∈ Ω.

(c) For any σ, ε ∈ S
d and ζ ∈ R , x �→ Gvp(x,σ, ε, ζ)

is measurable on Ω.

(d) The mapping x �→ Gvp(x,0,0, 0) ∈ Q.




(12.4.9)

(a) φ : Ω × S
d × S

d × R → R.

(b) There exists Lφ > 0 such that
|φ(x,σ1, ε1, ζ1) − φ(x,σ2, ε2, ζ2)|
≤ Lφ (‖σ1 − σ2‖ + ‖ε1 − ε2‖ + |ζ1 − ζ2|)
∀σ1,σ2, ε1, ε2 ∈ S

d, ζ1, ζ2 ∈ R, a.e. x ∈ Ω.

(c) For any σ, ε ∈ S
d and ζ ∈ R ,x �→ φ(x,σ, ε, ζ)

is measurable on Ω.

(d) The mapping x �→ φ(x,0,0, 0) ∈ L2(Ω).




(12.4.10)

Moreover, the initial damage field satisfies



220 12 Contact with Damage

ζ0 ∈ K. (12.4.11)

An explanation and an example of the damage source function φ can be
found in Sect. 12.1. In particular we may use a truncated source function,
described there, but we note that here the function depends on σ, as well.

Next, we recall that the bilinear form a and the set K are defined by
(12.1.9) and (12.1.10), respectively, K = [0, 1], and we use the notation U1, j
introduced on page 109. As usual, for each instant t ∈ [0, T ], we define F by

〈F(t),v〉 =
∫
Ω

fB(t) · v dx+
∫
ΓN

fN (t) · v dS ∀v ∈ U1,

and we let

Σ(t) =
{
τ ∈ Q : (τ , ε(v))Q + j(v) ≥ 〈F(t),v〉 ∀v ∈ D(j)

}
.

Then, a variational formulation for Problem Pvp−dd is as follows.

Problem PVvp−dd. Find a displacement field u : [0, T ] → U1, a stress field
σ : [0, T ] → Q1, and a damage field ζ : [0, T ] → H1(Ω) such that

σ̇(t) = Avpε(u̇(t)) + Gvp(σ(t), ε(u(t)), ζ(t)), (12.4.12)

(σ(t), ε(v) − ε(u̇(t)))Q + j(v) − j(u̇(t))
≥ 〈F(t),v − u̇(t)〉 ∀v ∈ U1, (12.4.13)

ζ(t) ∈ K, (ζ̇(t), ξ − ζ(t))L2(Ω) + a(ζ(t), ξ − ζ(t))
≥ (φ(σ(t), ε(u(t)), ζ(t)), ξ − ζ(t))L2(Ω) ∀ξ ∈ K, (12.4.14)

for a.e. t ∈ (0, T ), and

u(0) = u0, σ(0) = σ0, ζ(0) = ζ0. (12.4.15)

We have the following existence and uniqueness result, obtained in [23].

Theorem 12.4.1. Assume that (6.4.8), (7.4.9)–(7.4.11), (9.6.7), (12.4.9)–
(12.4.11) hold. Then, there exists a unique solution (u,σ, ζ) of problem
PVvp−dd. Moreover, the solution satisfies

u ∈ W 1,2(0, T ;U1), σ ∈ W 1,2(0, T ;Q1),

ζ ∈ W 1,2(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).

We conclude that the frictional contact problem for viscoplastic materials
with material damage has a unique weak solution (u,σ, ζ). We note that in
this problem we do not have any restrictions on the Lipschitz coefficients of
the problem data. This is due to the fact that the friction potential in the
boundary condition (12.4.7) depends on the solution only via the velocity
and, unlike the functional j = j(u, u̇) in Sect. 9.3, does not depend on the
solution and on its velocity.
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Proof. The proof is accomplished in three steps that we outline now.
(i) Let (η, θ) ∈ L2(0, T ;Q × L2(Ω)) and let zη ∈ W 1,2(0, T ;Q) be given

by

zη(t) =
∫ t

0
η(s)ds+ σ0 − Avpε(u0) ∀t ∈ [0, T ]. (12.4.16)

It follows that there exists a unique solution uη ∈ W 1,2(0, T ;U1) and ση ∈
W 1,2(0, T ;Q1) of the variational problem

ση(t) = Avp ε(uη(t)) + zη(t) ∀t ∈ [0, T ], (12.4.17)

(ση(t), ε(v) − ε(u̇η(t)))Q + j(v) − j(u̇η(t))
≥ 〈F(t),v − u̇η(t)〉 ∀v ∈ U1, a.e. t ∈ (0, T ), (12.4.18)

uη(0) = u0. (12.4.19)

Using again Theorem 6.3.7 we obtain the existence of the unique function
ζθ ∈ W 1,2(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) such that

ζη(t) ∈ K, (ζ̇θ(t), ξ − ζθ(t))L2(Ω) + a(ζη(t), ξ − ζθ(t))
≥ (θ(t), ξ − ζθ(t))L2(Ω) ∀ξ ∈ K, a.e. t ∈ (0, T ), (12.4.20)

ζη(0) = ζ0. (12.4.21)

(ii) We consider now the operator

Λ : L2(0, T ;Q× L2(Ω)) → L2(0, T ;Q× L2(Ω))

defined by

Λ(η, θ) =
(
Gvp(ση, ε(uη), ζθ), φ(ση, ε(uη), ζθ)

)
, (12.4.22)

where, for every (η, θ) ∈ L2(0, T ;Q×L2(Ω))), the triplet (uη,ση, ζθ) denotes
the solution of the variational problem (12.4.17)–(12.4.21).

Let (η1, θ1), (η2, θ2) ∈ L2(0, T ;Q × L2(Ω)) and let t ∈ [0, T ]. Using
(12.4.9) and (12.4.10) we deduce

‖Λ(η1, θ1)(t) − Λ(η2, θ2)(t)‖Q ≤ c ‖ση1(t) − ση2(t)‖Q
+ ‖uη1(t) − uη2(t)‖V + ‖ζθ1(t) − ζθ2(t)‖L2(Ω), (12.4.23)

and by (12.4.16)–(12.4.21) we obtain

‖uη1(t) − uη2(t)‖2
V ≤ c

∫ t

0
‖η1(s) − η2(s)‖2

Q ds,

‖ση1(t) − ση2(t)‖2
Q ≤ c

∫ t

0
‖η1(s) − η2(s)‖2

Qds,

‖ζθ1(t) − ζθ2(t)‖2
L2(Ω) ≤ c

∫ t

0
‖θ1(s) − θ2(s)‖2

L2(Ω)ds.
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Here, again, c represents a positive generic constant which does not de-
pend on time. Using the previous inequalities and the Banach fixed-point
theorem, we find that the operator Λ has a unique fixed point (η∗, θ∗) ∈
L2(0, T ;Q× L2(Ω)).

(iii) Now, from (12.4.16)–(12.4.21) we obtain that the triplet (u,σ, ζ)
where u = uη∗ , σ = ση∗ , ζ = ζθ∗ is the unique solution of the variational
problem PVvp−dd. �

As has been mentioned above, problems with material damage in the form
described above are new, and their full analysis lies in the future. However,
in view of the applied importance of such problems in civil engineering and
in industrial design, among others, one can expect rapid development in their
understanding in the near future.



13 Dynamic, One-Dimensional
and Miscellaneous Problems

The previous part of this monograph makes it clear that the branch of the
Mathematical Theory of Contact Mechanics, which deals with quasistatic
problems, has been developing and expanding rapidly. Other branches are
also undergoing rapid development and in this short chapter, we briefly re-
view a number of recent publications on related dynamic and one-dimensional
contact problems with or without thermal effects. Then miscellaneous prob-
lems are discussed.

As has been pointed out in the Introduction, these topics already warrant
comprehensive surveys of their own. Here, we mention only those which have
an emphasis on modelling and mathematical analysis. Our intension is simply
to provide a quick, and far from comprehensive, list of recent publications
dealing with these and related problems.

A recent review of dynamic models, experiments and applications, with an
emphasis on the latter is [232], and references of engineering papers dealing
with friction in joints can be found in the review [233].

Section 13.1 provides a review of mathematical publications dealing with
dynamic contact in which the inertial terms in the equations of motion cannot
be neglected. Some of the results relate to contact problems for viscoelastic
materials with friction, thermal effects and frictional heat generation, while
others deal with related or parts of such problems. The rapid growth of this
part of the theory can be seen from the presented publications.

In Sect. 13.2 we describe recent results on one-dimensional problems with
contact. There is clearly a substantial and growing body of results for such
problems. Many of these may be used as benchmarks for numerical analysis
and simulations, since mathematically they are easier to analyze and numer-
ically easier to simulate. Indeed, some of the difficulties related to two- or
three-dimensions are absent, allowing for easier and more transparent treat-
ment.

Section 13.3 presents a collection of various mathematical publications
on different aspects of contact that do not directly belong to the previous
sectons. These include dual formulations, punch problems, rolling contact,
lubrication and other topics.

To a certain degree the lists of publications that follow reflect our knowl-
edge and biases.

M. Shillor, M. Sofonea, J.J. Telega: Models and Analysis of Quasistatic Contact, Lect. Notes
Phys. 655, (2001), 225–234
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004
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13.1 Dynamic Contact Problems

This monograph is dedicated to quasistatic contact problems. In such prob-
lems the process is assumed to evolve slowly so that the accelerations in the
system are negligible. That is, the system moves on a trajectory consisting of
equilibrium points in the phase space. When this is not the case, the accelera-
tions cannot be neglected and the process becomes dynamic. Mathematically,
the system changes character, from being of an elliptic or a parabolic type to
a hyperbolic type. In particular, the latter supports waves, while the first two
do not. For this reason, any process where the contact is abrupt, with pos-
sibly, but not necessarily, discontinuity in the velocity upon contact, has to
be described by a dynamic model. In such cases, the waves generated upon
contact are likely to be important. In particular, the processes of impact,
in which the contacting body has a rigid body velocity and the contact is
abrupt, must be described by dynamic models. The waves associated with
impact cannot be neglected as anyone interested in earthquakes can attest.

The literature on various aspects of dynamic contact with or without
friction is growing rapidly. The first result can be found in [5] and it deals
with the Tresca friction condition; see also [91,93]. Moreover, an explanation
of the difficulty in obtaining the necessary estimates in dynamic problems can
be found in [5]. The existence of a weak solution for a simplified unilateral
dynamic contact problem for an elastic material in a special configuration
appeared in [234].

However, the existence of a solution to the dynamic contact problem be-
tween a body made of an elastic material and a rigid obstacle, described
by a unilateral contact condition of the Signorini type, is still an unresolved
question.

Dynamic problems with normal compliance were investigated and simu-
lated in [11, 12, 235]. There, the normal compliance condition (2.6.2), in the
form of a power law, was introduced and the existence of the unique weak
solution for the problem with a linearly elastic or viscoelastic material was
proved by using the Galerkin method. The problem was also simulated nu-
merically.

Dynamic problems with a general normal compliance condition were in-
vestigated in [86], where the usual restrictions on the growth of the normal
compliance function, dictated by the need to use trace theorems for Sobolev
spaces, were removed by the construction of appropriate function spaces.

It is found in these and the publications mentioned below, that the combi-
nation of viscoelastic material behavior and the normal compliance condition,
in contrast to purely elastic material and the Signorini contact condition, al-
lows for the mathematical analysis of a variety of dynamic problems. Often,
the uniqueness of the weak solution can be established, in addition to its
existence, and moreover, such solutions have better regularity or smooth-
ness properties. These improved properties are reflected in the behaviour
of numerical algorithms for such problems, as they allow for the establish-
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ment of convergence results, thus providing confidence in the numerical re-
sults.

Indeed, it has been established in [37] that the differentiability of the nor-
mal compliance function, assuming that the rest of the data is sufficiently
smooth and appropriate assumptions are made on the compatibility of the
initial data, controls the regularity, in time, of the solution to the friction-
less dynamic contact problem. When the normal compliance function pn is
Lipschitz continuous, the accelerations are continuous upon contact and the
acceleration rate may be discontinuous. If pn is k times differentiable, then
the solution may have a jump of the k + 2 time derivative. This result, in
addition to its intrinsic interest, will allow for better numerical estimates and
rates of convergence of algorithms for the numerical approximations of these
problems.

Dynamic contact problems with normal damped response, or the cor-
responding limit unilateral condition on the velocities, are to be found in
[89,92,236,237]. There, the contact condition was stated in terms of the sur-
face velocity, and it may describe some form of surface damping, a lubricating
layer, or a granular material. However, the condition was introduced on an
ad-hoc basis, without any clear underlying derivation, such as asymptotic ex-
pansion, and in some publications it was investigated only for mathematical
reasons. A physical process where such a condition has a clear meaning is
the plowing of the ground. There, the rigid plow moves within a viscoplastic
material with a known velocity and the ground particles that are in contact
with the plow cannot move with a slower velocity than that of the plow.

Various mathematical aspects of dynamic frictional contact problems, in
addition to those mentioned above, can be found in [35, 44, 93–95, 108, 161,
166, 169, 238, 239]. In the paper [44] the existence of a weak solution was es-
tablished when the wear of the contacting surfaces was included in the model.
The existence of the weak solution for the frictionless dynamic problem with
adhesion was proved in [161], and the model was numerically analyzed and
simulated in [166]. Numerical approach to dynamic contact was discussed
in [239].

The dynamic obstacle problem for the vibrating membrane, constrained
to lie on or above a rigid foundation, was investigated in [165], where the
adhesion of the membrane to the obstacle was taken into account. The exis-
tence of a weak solution was established which, in particular, establishes the
existence of a solution for the dynamic problem without adhesion.

It is commonly assumed in many applications, and there is plenty of ex-
perimental support for it (see Sect. 2.7 for further details), that the friction
coefficient is a complex quantity, and depends on the slip rate, among other
process variables. An important result has been obtained in [106] concerning
the slip rate dependence of the friction coefficient. There, a dynamic bilat-
eral contact problem for an elastic material with a rigid support and with
slip dependent friction coefficient was investigated in a setting that leads to
a one-dimensional mathematical problem. It was shown that, under certain
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growth assumption on the friction coefficient, the problem possess a contin-
uum of solutions and the maximum delay principle was used to choose the
‘physical’ solution; that is, the one solution that will be actualized in practice.
It seems that this solution coincides with the unique solution of the problem
for a viscoelastic material, with vanishingly small viscosity coefficient. Thus,
one may conjecture that viscosity, even if it is vanishingly small, leads to
the solution that is physically realized. This seems to indicate, again, that
dynamic problems with purely elastic material constitutive laws and slip rate
dependent friction coefficients possesses inherent mathematical difficulties.
Clearly, this important topic warrants further investigation.

Models for contact with slip rate dependent friction coefficient were inves-
tigated in [32–34,36,240,241]. Although, in applications the friction coefficient
is often assumed to depend on the slip rate, as this list indicates, mathemat-
ical results for such a coefficient are only now emerging. In addition to its
applied interest, the topic deserves further study in view of the possible insta-
bilities related to it. Indeed, some of the unpleasant noise generated by a car
while braking may be caused by such instabilities. In [100,106] the coefficient
of friction was assumed to depend on the slip ‖uτ‖ and the existence of a
weak solution was proved by using the Galerkin method.

We turn to describe some of the publications in more detail. The dynamic
contact problem between a viscoelastic body and a reactive foundation, mod-
elled with the normal compliance condition, with a slip dependent friction
coefficient can be found in [32]. There, a general existence and uniqueness
theorem for set-valued pseudomonotone operators was proved and applied
to the contact problem. This theorem was also used in [33] to establish the
existence of a weak solution to the bilateral dynamic contact problem for a
viscoelastic material, with a friction coefficient that is slip rate dependent
and that has a jump from a static to a dynamic value at the onset of sliding.
The friction coefficient was represented by a graph in terms of the slip rate.
In [34], a similar result was obtained for the problem with the normal compli-
ance condition. The uniqueness of the solutions in the latter two papers was
left open, and since the graph has a jump, they may very well be nonunique.
This topic certainly deserves further clarification.

As far as we are aware of [33,34,36] are the only mathematical publications
that take into account the possible sharp transition in the friction coefficient,
from a stick to a slip state, which is usually modelled with a jump.

A different approach to dynamic contact, based on the introduction of a
thin semi-rigid contact layer can be found in [107, 108]. It is novel and may
lead to some interesting and useful new contact conditions. The idea is in
its infancy, and such an approach, using asymptotic expansion to pass to the
limit when the thickness of the layer vanishes, deserves further study.

A dynamic problem of frictionless contact with adhesion was recently
studied in [242]. There, a nonlinear viscoelastic constitutive law was used
to model the material behavior and contact was described with a modified
normal compliance condition involving a truncation operator. A variational
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formulation of the problem was derived and an existence and uniqueness
result was obtained. Then, a fully discrete scheme for the problem was intro-
duced and error estimates were derived. Finally, representative simulations,
depicting the evolution of the state of the system and, in particular, the
evolution of the bonding field, were presented.

A dynamic frictionless contact problem with normal compliance and dam-
age was studied in [243]. There, the existence of the unique weak solution of
the model was proved. Numerical approximations of the problem, based on
fully discrete schemes, were considered using finite elements to discretize the
spatial domain and a forward Euler scheme to discretize the time; error esti-
mates were derived and numerical simulations were presented.

Dynamic Contact Problems with Thermal Effects. There exist recent
and rapidly growing mathematical literature on contact problems which in-
clude thermal effects. As has been mentioned in few places, thermal effects
can be very important in some applications. Indeed, sudden application of
the car’s brakes causes the rapid decrease in the kinetic energy and releases a
large amount of heat, generated by the friction traction, which causes rapid
raise of the temperature. This may affect the friction coefficient and also may
cause softening or even local melting of the contacting surfaces. The publi-
cations below deal mostly with dynamic processes. Publications which deal
with quasistatic processes have been mentioned in the appropriate places in
this monograph.

General models for contact processes with thermal effects can be found
in [65,97,99,140], where the models were derived by using general thermody-
namic principles. However, even these do not contain temperature dependent
friction coefficient or themomechanical changes of the contacting surfaces.

Dynamic contact with thermal effects in two or three space dimensions
can be found in the papers [41,43–45,89,96,129,131–134,139,237,244], while
modelling and numerical simulations can be found in [97–99,114,140,141]. We
refer the reader to these publications for additional references. These include
various models and contact conditions. The main feature is the frictional
heat generated during the contact process. However, as far as we are aware
of, [131] is the only article where the dependence of the friction coefficient on
the temperature is included. Moreover, the possible softening of the surface
material has not been addresses in any one of these papers. Clearly, this is a
topic of considerable applied and theoretical interest and it is reasonable to
expect some progress in its study in the near future.

Finally, we mention the long-term program for the investigation of the
stability of thermoelastic contact that has been carried out in [116–122] and
references therein. The stability of the steady states was studied in friction-
less and frictional contact problems. In [122] the stability of the combined
processes of thermal contact and frictional heat generation, when the sur-
face heat exchange coefficient was assumed to be pressure dependent, was
analyzed and existence, nonexistence, uniqueness, and nonuniqueness results
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were obtained. It may be of interest to investigate the influence of viscosity,
even in vanishing amounts, on the stability of these problems. Also, it may
be of interest to add the slip rate dependence of the friction coefficient to
the stability studies. Both issues are of applied importance and deserve an in
depth investigation.

13.2 One-Dimensional Dynamic or Quasistatic Contact

We turn now to describe one-dimensional dynamic or quasistatic problems
with contact. The interest in such problems lies in the fact that the mathe-
matical analysis is considerably easier and more transparent, as some of the
difficulties associated with two or three dimensions are absent. The regularity
of the solutions is usually better and the use of trace theorems more conve-
nient. Such problems my provide insight into the possible types of behaviour
of the solutions and on occasions lead to decoupling of some of the equations,
thus simplifying the analysis even more. Moreover, one may use such mod-
els as tests and benchmarks for computer schemes meant for simulation of
complicated multidimensional contact problems.

In some cases the one-dimensional problem was solved some time before
the multi-dimensional one, leading to the development, in the former, of the
tools and ideas needed for the latter.

Dynamic unilateral problems for the vibrating string were studied in [245]
and the dynamic rod in [246], where the existence of the weak solutions was
established, and in the latter the problem was also numerically simulated.

Models, analysis and simulations of contact problems for beams and rods
can be found in [147,150,247–253].

Quasistatic frictional contact between a beam and a reactive obstacle
under it was investigated in [147] where the wear of the beam resulting from
the contact was taken into account. This led to an unusual mathematical
problem since the elastic coefficient in the equation became wear dependent.
Related problems for frictional contact of a beam with a foundation arising
in rail casting can be found in [247].

Dynamic and quasistatic processes of contact with adhesion between an
elastic or viscoelastic beam and a foundation were studied in [163,167]. The
contact was modeled with the Signorini condition for a rigid foundation and
with the normal compliance condition for a deformable one. The existence
and uniqueness of the weak solution for each one of the problems was estab-
lished using the theory of variational inequalities, fixed point arguments and
the existence and uniqueness result in [32]. The numerical approximations of
the quasistatic problem with normal compliance were considered, based on
semi-discrete and fully-discrete schemes. The convergence of the solutions of
the discretized schemes was proved and error estimates for these approximate
solutions were derived. These are among the very few publications where both
the quasistatic and the dynamic problems were analyzed. However, the rela-
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tionship between the quasistatic and the dynamic problems was not analyzed
and remains an important open problem. Indeed, the unresolved, as yet, ques-
tion is: ‘When is the quasistatic approximation a reasonable approximation
of the dynamic solution?’

In [248] the problem of dynamic frictional contact between the tip of a
vibrating beam and a moving surface was analyzed. The contact was assumed
at the beam’s tip which simplified the analysis considerably. Nevertheless, the
contact shear stress was found to be only a distribution and care was needed
in its treatment.

Quasistatic contact of a elastic-perfectly-plastic rod was studied in [249].
This was, to the best of our knowledge, the first result for contact of a material
with such a constitutive law.

Dynamic contact of two rods was modelled, analyzed and numerically
simulated in [250]. The vibrations of a beam which has one end constrained
to move between two stops were analyzed in [251] and numerically simulated
in [252]. A related problem in which the stops are not fixed but are mounted
on a slider was modelled, analyzed, and numerically simulated in [253].

One-dimensional problems with damage, but without contact, were inves-
tigated in [173, 174]. In the first the quasistatic problem was considered and
was shown to decouple. Once the damage field was found, the displacements
were obtained by integration. In the second, the dynamic problem was shown
to possess a local weak solution. A similar problem with contact was investi-
gated in [137] where the existence of the local weak solution was established.

One-Dimensional Contact with Thermal Effects. We turn now to de-
scribe results for one-dimensional contact models with thermal effects. It
is seen that there are many more results for such problems, and in some
cases their investigation paved the way, both mathematically and in terms of
insights into the models, to the the recent results on multidimensional ther-
moviscoelastic contact, many of which were described in this monograph.

Thermoelastic contact of a slender rod was first addressed, mathemati-
cally, in [138] where the existence of a weak solution for a quasi-static contact
problem in linear thermoelasticity was established.

A comprehensive investigation of the contact problem with the Signorini
condition can be found in [123]. The quasistatic problem was shown to de-
couple, resulting in a nonstandard parabolic equation with a nonlinear and
nonlocal source term. The emphasis there was on a comprehensive investi-
gation of the heat exchange condition. It is well known that if one assumes
the idealized condition in which the thermal contact is either perfect or there
is complete insulation, then the system may exhibit infinitely rapid oscilla-
tions which preclude the existence of any solution. Therefore, realistic heat
exchange conditions were constructed and analyzed in [123]. The heat ex-
change coefficient was assumed to depend on the separation distance and on
the contact pressure. It was found that in nondimensional variables one can
use a natural variable to describe both cases (see Sect. 3.1 for more details).
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Two forms of the coefficient were studied, a continuous one and a graph with
a jump at the onset of contact.

A decoupled thermoelastic problem for axially symmetric setting can be
found in [128] where the existence of a weak solution was established.

Local null controllability of the thermoelastic contact problem in [123]
has been established very recently in [126].

The first existence result for dynamic contact of a thermoelastic rod with
a rigid obstacle, using the Signorini condition, was obtained in [254]. The
analysis there was quite involved and the authors used compensated com-
pactness to prove their result.

Various additional models for one-dimensional thermoviscoelastic contact
problems and their analysis can be found in [127, 128, 135–137, 139, 255–
262]. The last three references describe numerical approximations to one-
dimensional problems.

The wear of the tip of a thermoviscoelastic beam, resulting from frictional
contact with a moving surface, was modelled and analyzed in [135], and
numerical simulations of the problem were performed in [136].

The dynamic impact of two thermoelastic rods can be found in [257] and
the quasistatic contact in [258]. In both papers the heat exchange between
the tips was assumed to depend on the distance or the gap when the beams
were separated.

13.3 Miscellaneous Results

As was mentioned in the Introduction, once the existence and possible unique-
ness or nonuniqueness of solutions for a problem have been established, then
the analysis, numerical analysis, computer simulations, and control issues
arise. The mathematical literature on these topics is in its infancy, although
considerable progress has been made in the numerical analysis and computer
simulations (see [51] and references therein).

The stationary unilateral contact problem with phase transition was in-
vestigated in [263]. There, the flow of a molten material and its solidification
at the boundary were modelled and analyzed. Such problems where molds are
used for the manufacturing of parts and components are frequent in industry.
The problem is very important because the frictional heat generated during
contact may cause local melting, and thus affect, possibly dramatically, the
whole process.

Problems of asymptotic decay of solutions for thermoviscoelastic contact
models were reported in [45, 139]. These are of applied interest since it is
known that thermal decay may be quite slow.

Rolling frictional contact, a very important topic in transportation, can
be found in the important monograph [67], and also in [129, 177, 264] and
in the references therein. Indeed, the microscopic processes that take place
at the contact patch between the wheels of a moving vehicle, a train, or a
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taxiing airplane and the ground determine the macroscopic behaviour of the
entire system.

Mathematical results on contact with lubrication can be found in [68,265–
267] and references therein. Lubricated contact is a topic that occupies many
shelves in engineering libraries because of its practical importance to the
functioning of machines and moving structures. Mathematical results about
it, however, are rather limited. The first steps can be found in the references
cited above, but the topic is wide open and much remains to be done.

Dual formulations of contact problems are of considerable applied inter-
est since these are set in terms of the stresses, and contact stresses are the
quantity of main interest to the design engineer. Displacements are usually of
secondary interest. The equivalence between the primal and the dual formu-
lation is a problem of great interest, since both represent possible variational
formulations of the same mechanical problem. Such equivalence results were
presented in this monograph (see Theorems 8.5.2, 9.1.3 and 9.5.3); others
can be found in [51]. Dual formulations of various contact problems can also
be found in [13, 49, 60, 201, 268–270] and references therein. A stress formu-
lation of a frictionless contact problem for an elastic-perfectly-plastic body
was investigated in [271].

Various modelling approaches to frictional contact, in addition to the
above references, can be found in [272, 273]. An experimental study of the
evolution of the friction coefficient with wear can be found in [274]. Indeed,
mathematical models that do not have an underlying experimental support
are likely to remain just mathematical curiosities.

Results on the stability of frictional contact, in particular when such prob-
lems may become unstable, leading to self-induced oscillations or complex
behaviour, can be found in [240, 275, 276] and references therein. These are
very important both theoretically and numerically. Indeed, if the mathemati-
cal problem is unstable, the numerical solutions will have oscillations, or even
worse, will produce completely unreliable results. These papers deal with fi-
nite dimensional problems that can be obtained from the continuous once
by spatial discretization. However, to our knowledge, the mathematical tools
needed to investigate the continuous contact problems are not yet available.

Noncoercive quasistatic contact problems which describe contact between
a punch and a foundation were addressed in [277, 278], and discretized sys-
tems in [279], among others. The mathematical difficulty lies in the simple
observation that the punch may move as a rigid body, and, therefore, addi-
tional assumptions on the data and more involved methods of analysis are
needed for such problems.

Optimal control, optimal shape design and controllability can be found
in [57, 126, 280] and references therein. We observe that from the point of
view of the design engineer, the control of the process is far more important
than its thorough understanding. However, models for contact processes are
sufficiently complicated so that simple-minded control strategies that do not
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involve any analysis of the situation are likely to be of little use in general
settings.

Various additional results on plastic, elastic-perfectly-plastic and vis-
coplastic problems, that may contain contact, were obtained in [281–286]
and references therein.

Limit analysis and shakedown theorems, when unilateral conditions are
used together with friction, deserve to be mathematically studied in depth.
The mechanical settings and problem formulations can be found in [287,288]
and references therein.

Applications of contact problems to animal and human biomechanics were
considered very recently in [61,148,149,289] and the references therein. This
is a very important topic and it is safe to assume that it will be addressed in
many mathematically-oriented publications in the very near future.

Applications of frictional contact in plate tectonics, including the descrip-
tion of earthquake initiation, can be found in [101, 241, 290–296] and in the
references therein. The geophysical literature on frictional contact is consid-
erable but deals mainly with modelling and numerical simulations.

Finally, we note that references on the numerical analysis and especially
on the computational aspects of contact abound. In addition to the many
references above, the interested reader may find a host of additional references
in the following [239,297–317].



14 Conclusions, Remarks
and Future Directions

This monograph shows clearly that the branch of the Mathematical Theory
of Contact Mechanics which deals with quasistatic processes has made an
impressive progress in the last decade. Indeed, from a handful of mathemat-
ical results, mainly on static problems and very few on quasistatic and dy-
namic ones, it has developed into a body of results that encompasses many of
the fundamental processes present when deformable bodies come in contact.
These include friction, wear, adhesion, thermal effects, and material damage
among others. Currently, these results mainly concern the modelling of these
processes, their weak or variational formulations, the existence and possibly
uniqueness of the weak solutions, and, on occasions, the well-posedness of the
models. In the course of analysis of the models, new mathematical results
have been obtained, extending the Theory of Variational Inequalities, which
were directly motivated by the needs of the analysis. This cross fertilization
between modelling and applications on the one-hand and mathematical anal-
ysis on the other-hand is one of the important aspects of dealing with contact
problems which inherently are nonlinear, diverse, and rather complex.

The Theory is not in its infancy anymore, but it still has a long way
to go before it becomes a fully mature discipline. The main progress has
been made in the construction of general models for the various processes
involved when contact between deformable bodies takes place, and in the
proofs of the existence, possible uniqueness and continuous dependence of
the solutions of these models. This forms the framework and environment for
further development of the Theory. Now, that the models have been shown to
make sense, their mathematical analysis is in order, together with numerical
analysis and numerical simulations. Here lie some of the open problems that
need to be addressed.

Although the progress is impressive, many open problems remain to be in-
vestigated and resolved. We now describe some of the open problems which,
in our opinion, are urgent because their solution will allow further expan-
sion and growth of the discipline. Some are more technical, or mathematical,
others are more general. Any progress in these directions will enhance the
Theory, and will open avenues for new advances and ideas.

A major modelling problem exists in the description of frictional contact.
Originally, the Amontons or Coulomb friction law was proposed to model
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the frictional contact among rigid bodies. Currently, it is being used for the
contact of deformable bodies, in a pointwise sense on the contact surface,
which does not have a rigorous physical basis. Indeed, as can be seen from
the results quoted in this book and in the references, currently the friction
coefficient, which measures the ratio between the pressure and the shear
stress on the contacting surfaces, depends on the position, relative slip, on
the temperature, on the wear, and on the surface, indeed,

µ = µ(x, v, θ, w, . . .).

It is unreasonable to describe so many different and complicated phenomena
with a single coefficient function, or even a graph (if we take into account
the jump from static to dynamic values at the onset of sliding). No doubt
a closer look at the physics of contacting surfaces is needed. That may pro-
vide, however, only a partial description of the processes since contacting
surfaces have complicated geometries and a wide range of microstructures
which change and evolve with the friction process. There are also particles or
debris, fluids, oxides, and other materials on the contact surfaces. Therefore,
a friction law based on a smooth surface made of the same material as the
parent body seems to be useful only in a limited range of applications.

In the short term, there is considerable interest in a general friction con-
dition which behaves as the Coulomb law for small contact pressures and as
Tresca’s law at large contact pressures, as described in Sect. 2.8. Such seems
to be the experimental evidence. However, as yet there is no derivation of
such a condition from thermodynamic principles.

On the other hand, this synthesis shows clearly that, mathematically, we
can deal with very complicated coefficients of friction, and contact conditions,
especially if they are assumed to be Lipschitz continuous, with respect to all
of their arguments, and bounded. Using graphs is new and leads to weaker
solutions and very likely to loss of uniqueness.

We turn to some open mathematical problems. In evolutionary friction
problems for elastic materials, uniqueness results are unavailable and it may
be the case that, generally, there is no uniqueness in such problems, as recent
examples in finite dimensions show. Moreover, all the existence results were
obtained by restricting the size of the (constant) friction coefficient. Whether
it is a limitation of the mathematical approaches, which typically were based
on fixed-point arguments, or an intrinsic feature of the models is an open
question. There seems to be some numerical and theoretical evidence that the
difficulties are related to the intrinsic mathematical structure and solutions
may bifurcate or blow-up. On the other hand, when viscoelastic materials
are considered together with the normal compliance contact condition, both
existence and uniqueness have been established without any size restrictions.
It was found that even vanishing amounts of viscosity regularize the solutions
and allow to prove their uniqueness and well-posedness. These mathematical
results strongly suggest, or possibly reflect the fact, that there are no purely
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elastic materials, certainly not when dynamic contact or impact is involved.
Even if one insists on using an elastic material, adding a small amount of
viscosity to the model may not change the solution as far as applications are
concerned except to make it unique and better behaved. This, in turn, may
allow for a more thorough analysis of the solutions since in such cases one
deals with functions instead of measures and distributions. We also note that
often in numerical codes either viscosity is added, or the algorithm produces
the so-called ‘numerical viscosity,’ which, in either way, allows for better
behaved solutions.

There are very few regularity results for contact problems, except for the
classical problem of static contact of a membrane with a rigid obstacle and
the recent result reported in [38]. Moreover, an almost optimal regularity re-
sult for dynamic frictionless contact of a viscoelastic body, when the normal
compliance condition is used, has been established in [37]. However, the field
is wide open and progress is likely to be slow since we do not have as yet
the necessary mathematical tools. While maximum principles and compar-
ison theorems are available for quasistatic problems with a single equation,
and allow their in-depth study, such tools are unavailable for systems. The
optimal regularity of the solutions is a rather urgent matter, since it is un-
likely that significant progress can be made in the mathematical analysis of
contact problems without it. We note in passing that almost every contact
problem has a regularity ceiling, and unlike many other problems, beyond
this regularity ceiling, any additional regularity of the data does not imply
additional regularity of the solutions. Indeed, even if the obstacle or founda-
tion is very smooth, one or more of the first or second spatial derivatives will
have a jump at the contact/no contact point.

The next topic is intimately associated with the regularity issue. The in-
clusion of the regularizing operator R can be traced to [17, 213], and there
seems to be some physical justification in considering the normal stress in
the friction condition (8.5.5) as averaged over a small surface area which con-
tains many asperities. However, the main motivation for such a choice was
mathematical, since in a weak formulation the stress tensor does not have a
well defined trace on the boundary. At best, these are complicated distribu-
tions. To overcome this difficulty the operator R has been introduced. This
raises the question whether the mathematical difficulties associated with the
friction condition, in this setting, have physical origin and the mathematics
reflects them, or these are just mathematical difficulties related to the weak
formulation and have no underlying physical cause. In particular, this ques-
tion indicates the urgent need for regularity results for solutions of frictional
contact problems. These results will settle, in part, this question.

Mathematical models, not to mention any results, which take into account
the random distribution of asperities on contact surfaces are not available,
yet. Clearly, such random distributions must be taken into account. It might
be that considering frictional contact as a stochastic process may be of use.
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The mathematical analysis of the solutions of contact problems, in terms
of the description of their behaviour, does not exist yet. It is essential if we
wish to understand the details of the contact processes, and there is con-
siderable interest in the description of the contact set, its shape and the
shape of its boundary, which is a free boundary, and its evolution in time.
Indeed, at each time instant the potential contact surface ΓC is divided into
the part Γ conC where the body and the foundation are in contact (un ≥ g),
and the part Γ sepC where they are separated (un < g). The boundary of the
set Γ conC is a free boundary, dictated by the solution of the problem. When
the contact is with friction, the part where contact takes place is further
divided into (Γ conC )slip where relative slip takes place, and (Γ conC )stick where
the body and the foundation move in tandem. The curve that separates these
two sets is also a free boundary. The structure of the sets Γ conC , (Γ conC )slip,
and (Γ conC )stick is of considerable interest, both theoretical and applied, but
currently we do not have yet the tools to address these problems.

These issues are important for the design engineer, as they affect the
designs of the parts and their reliability and durability. Indeed, the processes
that take place on the contact patch between a rail and a wheel of a train
engine control the overall performance of the train.

The infinite-dimensional dynamical systems approach to contact problems
is virtually nonexistent. In this approach the state of the system is represented
by a point in an infinite-dimensional phase space, the space of displacements
and velocities. Then, the evolution of the system is described by the trajectory
of this point in the phase space. By investigating the structure of all possible
trajectories or motions, which are controlled by the attractors of the system,
an insight into the dynamics of the system can be obtained. In particular,
the asymptotic, or long-time behaviour can be established. To our knowledge,
the asymptotic behavior of the solutions, as t → ∞, has been investigated
in [45, 139] (see also the references therein). This topic certainly deserves
further consideration.

We believe that one of the topics that will be investigated in the near fu-
ture is the extension of the theory to take into account electric and piezoelec-
tric effects. Indeed, piezoelectric materials, those that have a strong coupling
between the mechanical stress and the electric potential, are being used ex-
tensively as sensors and switches in engineering applications and are mostly
involved in contact. This will lead to the inclusion of electric effects in the
models. And, eventually, will deal with the coupling of electric, mechanical,
and thermal fields. Moreover, the damage of the material will be included.
It is likely that many of the results presented in this monograph will be
extended, with appropriate modifications, to such materials, especially the
models for contact with or without friction. Moreover, based on our recent
experience, these models will lead to new mathematical results for variational
inequalities.
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Another important topic is that of modelling and analysis of contact
within the framework of large deformations. Many of the real world prob-
lems involve large deformations, such as in the metal forming processes. But,
the mathematical results for such problems are very sketchy. It was our initial
intent to dedicate a short part of the book to this topic. However, it became
evident, very quickly, that it deserves a monograph of its own. Geometrically
nonlinear settings and problems require a separate and very careful study.
For instance, even kinematics and the constitutive relations are much more
complicated than in the case of small deformations. Therefore, we are cur-
rently engaged in writing a monograph dedicated to contact problems for
solids and structures undergoing large deformations.

Finally, we observe that in addition to the free boundaries connected
with contact sets mentioned above, there exists a whole class of free bound-
ary problems related to grinding, drilling, and polishing of materials. In these
processes, the physical boundary of the object changes as a part of the pro-
cess, and is, thus, a free boundary. Its determination is one of the main ob-
jective of any model for such a problem. There are virtually no mathematical
models or results dealing with such problems.

Now that the framework is reasonably established, the control of con-
tact processes needs to be addressed. Indeed, in most applications this is
the main interest of the design engineer. Related issues are the observability
properties of the models and parameter identification. The models described
in this monograph include many parameters that have to be determined ex-
perimentally. Using reliable parameter identification procedures will help in
establishing the validity of the models. This, in turn, will help in the con-
struction of effective and efficient numerical algorithms for the problems with
established convergence. Steps in the latter direction can already be found
in [51]. As better models for specific applications are obtained, improved
mathematical models and numerical simulations will be possible.

In summary, impressive progress has been made and plenty remains to be
done.
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ed.) Dunod, Paris.
74. Cristescu N (1967), Dynamic Plasticity, North-Holland, Amsterdam.
75. Cristescu N and Suliciu I (1982), Viscoplasticity, Martinus Nijhoff Publishers,

Editura Tehnica, Bucharest.
76. Scholtz CH (1990), Mechanics of Earthquakes and Faulting, Cambridge Press.
77. Maugin GA (1992), The Thermomechanics of Plasticity and Fracture, Cam-

bridge Univ. Press, Cambridge.
78. Rabinowiz E (1995), Friction and Wear of Materials, (2nd ed.) Wiley, N.Y.
79. Osinski Z (1998), (Ed.) Damping of Vibrations, Balkema, Rotterdam.
80. Fernández–Garćıa JR, Han W, Shillor M and Sofonea M (2001), Numerical

analysis and simulations of quasistatic frictionless contact problems, Int. J.
Appl. Math. Comp. Sci. 11, 205–222.

81. Sofonea M, Han W and Shillor M, Contact Problems with Adhesion or Dam-
age, in preparation.

82. Landau LD and Lifshitz EM (1959), A Course of Theoretical Physics: Vol. 1
Mechanics, Pergamon Press, Bristol.

83. Rodŕiguez-Arós AD, Sofonea M and Viaño JM (2004), A class of evolution-
ary variational inequalities with Volterra-type integral term, Math. Models
Methods Appl. Sci. 14, 557–577.

84. Barral P and Quintela P (2002), Existence of a solution for a Signorini contact
problem for Maxwell-Norton materials, IMA J. Appl. Math. 67, 525–549.

85. Ionescu IR and Sofonea M (1993), Functional and Numerical Methods in Vis-
coplasticity, Oxford University Press, Oxford.

86. Kuttler KL (1997), Dynamic friction contact problem with general normal
and friction laws, Nonlinear Anal. 28, 559–575.

87. Awbi B, Essoufi El H. and Sofonea M (2000), A viscoelastic contact problem
with normal damped response and friction, Annales Polonici Mathematici
LXXV, 233–246.



References 245

88. Han W and Sofonea M (2000), Evolutionary variational inequalities arising in
viscoelastic contact problems, SIAM J. Num. Anal. 38, 556–579.

89. Rochdi M and Shillor M (1998), A dynamic thermoviscoelastic frictional con-
tact problem with damped response, preprint.

90. Rochdi M, Shillor M and Sofonea M (1998), A quasistatic contact problem
with directional friction and damped response, Applic. Anal. 68, 409–422.
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206. Brézis H, Problèmes unilatéraux (1972), J. Math. Pures et Appl. 51, 1–168.
207. Barboteu M, Han W and Sofonea M (2002), A frictionless contact problem

for viscoelastic materials, J. Appl. Math. 2, 1–21.
208. Amassad A and Fabre C (2003), Analysis of viscoelastic unilateral contact

problem involving Coulomb friction law, J. Optimization Theory and Appli-
cations 116(3), 465–483.

209. Awbi B, Rochdi M and Sofonea M (1999), Abstract evolution equations for
viscoelastic frictional contact problems, J. Appl. Math. Physics (ZAMP) 50,
1–18.

210. Fernández JR and Sofonea M, Numerical analysis of a frictionless viscoelastic
contact problem with normal damped response, Computer & Mathematics
with Applications, to appear.



References 251

211. Han W and Sofonea M (2001), Time-dependent variational inequalities for
viscoelastic contact problems, J. Comput. Appl. Math. 136, 369–387.

212. Awbi B, Chau O and Sofonea M (2002), Variational analysis of a frictional
contact problem for viscoelastic bodies, Intl. Math. Journal 1, 333–348.

213. Duvaut G (1982), Loi de frottement non locale, J. Méc. Thé. Appl., special
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absolute temperature 51
adhesion 39, 55, 203, 205, 228, 230

activation energy for debonding 43
bonding coefficient 204
bonding energy coefficient 194
bonding history 43, 194
coefficient 196
cycles of debonding and rebonding

43, 194
debonding 194
deterioration 194
evolution rate function 41
field 204
field, bonding field 39
functional 196
history weight factor 43, 195
interface stiffness 204
irreversible 41, 55, 194, 204
membrane 203
normal stiffness 60
normal traction 60
rate constant 41, 43, 204
rate function 194, 196
rebonding 41
reversible 55, 194
surface adhesive spring constant

204
surface stiffness coefficient 19
tangential traction 195

aluminium casting 120
Amontons law 235
anisotropic friction 22
Archard law 37, 184, 187
asymptotic decay 232

balance of power 50
Banach fixed-point theorem 95, 158,

173, 215, 218, 222

Banach space 87, 88, 94, 200, 202
beam 230
benchmark 230
bilinear form 171, 192, 208

coercive 171
symmetric 171

bilinear symmetric form 167
biomechanics 234
blow-up 47
bond characteristic length 194
bonding field, adhesion field 193
break down 209

Cauchy inequality 170
Cauchy-Lipschitz theorem 94
classical formulation 65, 68, 101, 104,

106, 108, 118, 122, 131, 136, 156,
160, 172, 185, 187, 190, 195, 205,
208, 216, 219

coefficient
heat exchange 177
of elasticity 179
of heat exchange 55
thermal conductivity 179
thermal expansion 174, 179
viscosity 179

coefficient of friction 21, 111, 128, 165,
166, 185

dynamic 44
static 44

coefficient of thermal expansion 53
compatibility 136, 166
compatibility condition 107

assumption 110
complementarity 19
compliance function 187
condition

normal compliance 228
conforming surface 164
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conservation equations 52
constitutive law

elastic-perfectly-plastic 231, 233
nonlinear viscoelastic 97
or relation 12
piezoelectric 238
rate-type viscoplastic 97, 98
relation 62
thermoviscoelastic 177, 178
viscoelastic 189, 228
viscoplastic 136, 156, 219

constitutive operator 96
elasticity 97
viscoelastic 96

constraint 57
contact area

nominal 164
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contact condition 18
adhesive 40, 61, 193, 195
bilateral 18, 106, 110, 111, 126, 156,

171, 177, 178, 184, 193, 195
complementarity condition 204
dissipative frictional potential 219
friction 61, 208
frictionless 20, 118, 136, 142, 193
normal compliance 18, 106, 122,
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normal compliance with wear 186
normal damped response 20, 112,

131, 185, 216, 227
normal damping coefficient 20
power-law 112
power-law friction 113
Signorini 19, 105, 136, 174, 204, 230
Signorini frictionless 218
Signorini with adhesion 60
tangential compliance 123
thermoelastic frictionless 174
wear 186

contact functional 80, 124, 133, 143,
192

contact surface 11
contact zone 184
contraction mapping 95, 200, 202
converges in norm 80
Coulomb law 28, 60, 127, 129, 160,

190, 235, 236
condition 104

dry friction 21, 164
friction 108
friction bound 21
of dry friction 120

cut-off function 103
cut-off limit 123

damage 44, 45, 61–63, 208, 216, 218,
220, 222, 229, 231

brittle damage 44
compression 46
diffusion 62, 63
diffusion constant 208
evolution equation 45, 219
evolution of the damage 208
fatigue damage 44
force 63
gradient 62
irreversible 45, 62
microcrack diffusion constant 45,

216
quenching 209
rate equation for the damage 63
reversible 45, 62
source function 45, 46, 209, 220
tension 46
thermoviscoelastic 61
threshold energy 62
truncated source function 220

damage source function 216
damping resistance coefficient 131,

134
debonding 41
deformation operator 89
differential inclusion 121
diffusion 188, 189
dimensionless variables 16
directional derivative 167
Dirichlet 15, 50, 54, 105, 208
dissipation functional 160
dissipation pseudo-potential 50, 53,

55, 61, 62
dissipative friction potential 108
divergence operator 90
dual formulation 129, 157, 233
duality pairing 94, 103, 176, 179
Dupré energy 60
Dupré surface energy 57
dynamic contact 226
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earthquake 234
effective domain 114
elastic-viscoplastic material 14

rate-type 14
elasticity 13

coefficients 13
elasticity bilinear form 103
elasticity operator 77, 106, 172
elasticity tensor 109, 165, 174, 177
elliptic

variational inequalities 92
elliptic variational inequality 212
energy equation 52, 63, 174
energy rate equation 56
entropy 50
equation

conservation 52
equilibrium 12, 67, 72, 191
evolution 63
motion 12, 17

equilibrium state 110, 137
equivalent 160
equivalent problem 131
essential boundary condition 69
Euler finite difference 102
evolution equation 219
evolutionary variational inequaly 167
extensive variables 50

fixed point 95, 200, 206, 213–215, 218,
222

fixed-point 130, 138, 140, 158, 159,
199, 200, 202

force 123, 128, 132, 136
foundation 11, 19, 50

deformable 50, 101
reactive 11, 101, 122, 186, 189, 228
rigid 11, 19, 50, 118, 126, 141, 174,

177, 184, 205
free boundary 11, 205, 238
friction 122, 142, 177, 186, 190

bound 21, 102
dry friction 185
coefficient 23, 26
function 127
heat generation 32
nonlocal 126
regularized 126
slip rate 171

tangential compliance 22
Tresca condition 22, 226

friction and damage 208
friction bound 21, 29, 68, 106, 110,

132, 177
friction coefficient 64, 102, 105, 127,

129, 164, 171, 172, 177, 179, 182,
191, 227, 236

discontinuous 26
dynamic value 26
history 171
slip 164
slip rate 164, 171, 227
static value 26
total slip rate 171

friction functional 128, 157, 165, 169,
173

frictional heat generation 32, 177, 178
function

convex 91, 109
damage source 46
effective domain 91
integrable function 76
Lipschitz continuous 77, 177
lower semicontinuous (l.s.c.) 91, 109
proper 109
square-integrable 76, 127
strongly monotone 77
subdifferentiable 92

function spaces 88
functional

adhesion functional 196
contact functional 133
convex 167
positively homogeneous 167
subadditive 167
surface functional 185, 187, 217

gap 12, 102, 123, 136, 186
Gauss divergence theorem 69
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generalized coordinates 50
generalized forces 52
glue 39, 193, 204

deterioration 194
gradient operator 51
Green formula 90, 103, 107, 166
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Gronwall inequality 95, 199, 201, 214
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Hölder space 86
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coefficient 53
heat exchange 177

coefficient 177
heat flux condition 177
heat flux vector 56
heat source 36, 174, 179
Helmholtz energy 62

free 50
Helmholtz potential 52
Hilbert space 80, 87, 88, 90, 93, 167,
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projection operator 90

ill-posed 108
indicator function 41, 45, 57, 92, 121,

204
internal 52

generalized forces 52
internal variables 50

irreversible 52
reversible 52

interpenetration 61, 67, 123
irreversible process 41

Kelvin-Voigt 13, 97
Korn’s inequality 89, 109
Kronecker delta 86

Lamé coefficient 35, 46, 96
Laplace operator 175, 205
Lebesgue measure 77
linear elasticity 13
linearly elastic

constitutive operator 96
elasticity tensor 96

Lipschitz 103, 108, 205
Lipschitz constant 217, 220
load bearing capacity 44
long-time behaviour 238
lower semicontinuous 91
lubrication

boundary lubrication 24
hydrodynamic lubrication 24
mixed lubrication 24

material
viscoplastic 142
viscoplastic with hardening 140

anisotropic 96, 174
elastic 101
linearly elastic 164
nonhomogeneous 96, 174
softening 229
thermoelastic 174
thermoviscoelastic 177
viscoelastic 96, 97, 122, 126, 131,

171, 190, 208, 216
viscoelastic with damage 99
viscoplastic 134, 136, 141, 162, 218
viscoplastic with damage 99

material density 12, 51
maximum delay principle 26, 228
Maxwell-Norton 14
mechanical seizure 108
membrane 39, 41, 203
memory term 43
method of virtual power 50
microcrack 208
mild wear 39
mixed formulation 108

weak 137
momentum 12, 52

Neumann condition 15, 50, 55, 208
Newtonian fluid 111
nominal contact pressure 28
noncoercive 15
nondifferentiable 68
nonsmooth mechanics 68
normal compliance 46, 60, 66, 67, 101,

102, 190, 191
functional 103
power law 102
with adhesion 40

normal damped response 46

obstacle 203
obstacle problem 11, 205
one-dimensional 230, 231
operator
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completely continuous 95
bounded 118
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Lipschitz continuous 92, 121, 198
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nonexpansive 91
positive definite 118
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strongly monotone 92, 198
symmetric 77, 118
total slip rate 171
truncation operator 40
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parabolic
equation 63
inclusion 208
variational inequalities 94

Perzyna’s law 14, 98
phase transition 232
piezoelectric 238
plate tectonics 234
plowing 227
Poisson ratio 96
power-law friction 111
primal formulation 127
primal variational formulation 160
product space 87
projection 91

map 98
operator 140

projection theorem 91
punch 233

quasi-variational inequality 129
quasistatic 12, 15, 67, 101, 136, 174,

178, 191, 205
quenching 47, 209

reactive foundation 101
rebonding 41
reference configuration 11
regularity 69
regularity ceiling 69
regularization operator 178
Riesz Representation Theorem 80,

121
rod 230
rolling frictional contact 232

saturation constant 40
Schauder fixed-point theorem 95, 144,

156, 160, 176
seizure 25
self-induced oscillations 233
severe wear 39
Signorini contact condition 19, 61,

104, 118, 120, 123, 140, 174, 218,
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Signorini contact condition with
adhesion 204

slider 231
sliding 184, 186
sliding friction 185
slip 164, 177

rate 21, 26, 164
sliding 68
total slip rate 26

small strain tensor 51, 89
Sobolev space 76, 86, 87
solution regularity 227
stability 229, 233
stick-slip 23
stiffness coefficients 57

normal 57
tangential 57

strain 12
stress 12, 52

field 90
irreversible 52
reversible 52

Stribeck curve 24
strongly monotone 77
subdifferential 41, 43, 45, 51, 58, 60,

92, 120, 121, 182, 204, 208
subdifferential boundary condition

109
subdifferentiation 51
subgradient 92
support functional 92
surface asperities 67
surface dissipation 55
surface functional 217
surface Helmholtz potential 55
surface traction 196
surface tractions 66, 174, 187
symmetric 114
symmetric tensors 66
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tangential compliance 102
tangential stiffness 194
temperature 174
tensile normal traction 194
tensor

elasticity 174, 177
thermal conductivity 174
thermal expansion 174, 177
viscosity 177

test function 69, 71
thermal conductivity tensor 174
thermal effects 32, 229

coefficient of heat conduction 62
coefficients of thermal expansion 53
heat exchange 32

coefficient 33
thermal expansion 62
thermal stresses 32

thermal expansion tensor 174, 177
thermodynamic 49
thermodynamically consistent 53
thermoelastic

linear constitutive relation 174
thermomechanical 49, 174
thermoviscoelasticity 53

relation 35
total slip rate 26
trace 89
traction 11, 50, 67, 123, 128, 132, 136,

177
surface 67

Tresca friction bound 29
Tresca friction law 22, 106, 108,

110–112, 127, 156, 236
truncation 210
truncation operator 40, 190, 194

variational formulation 65, 69, 71, 75,
80, 103, 105, 107, 110, 119, 124,
129, 130, 133, 140, 143, 157, 160,
161, 166, 173, 185, 188, 192, 196,
206, 210, 216

variational inequality 65, 77, 93, 121,
212

elliptic 93
first kind 93

vibrating membrane 227
vibrating string 230

virtual power 56
viscoelastic 66

Maxwell-Norton material 120
viscoelastic, frictionless 195
viscoelasticity 13

constitutive law 13
long term memory 13
short term memory 13

viscoplastic
operator 14
rate-type

Perzyna’s law 14
viscoplasticity 13
viscosity

coefficients 13
viscosity operator 13, 77, 172
viscosity tensor 177
viscous dissipation 54
volume force 177, 187, 196
volume forces 50, 66, 174, 179
volume heat source 50, 177

weak formulation 157, 176, 180
weak formulation 127
weak solution 71, 75, 81, 102, 104, 108,

110, 111, 113, 119, 120, 122, 124,
127, 131, 133, 134, 140, 141, 144,
160, 162, 164, 173, 176, 182, 186,
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weakly lower semicontinuous 91
wear 36, 37, 55, 184, 185, 187, 188

Archard law 184
coefficient 184
diffusion coefficient 190
evolution 184
function 37
rate constant 190

wear debris 36
wear diffusion 188, 190
wear function 189
wear particles 36

yield condition 98
yield function 98

von Mises 98
yield limit 98
Young modulus 96
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